
Math 3013.69033
Solutions to Final Exam

6:00pm - 8:00pm CDT, December 10, 2020

Name:

1. Give the definitions of the following linear algebraic concepts:

(a) (5 pts) a subspace of a vector space V .

• A subspace of vector space V is a subset W of V such that
(i) whenever λ ∈ R, w ∈ W , (λw) ∈ W
(ii) whenever w1,w2 ∈ W , (w1 + w2) ∈ W

(b) (5 pts) a set of linearly independent vectors

• A set of vectors {v1, . . . ,vk} is a linearly independent set if the only solution of

x1v1 + · · ·+ xkvk = 0

is

x1 = 0, . . . , xk = 0

(c) (5 pts) a linear transformation between two vector spaces V and W .

• A linear transformation between two vector space V and W is a function T : V → W
such that
(i) T (λv) = λT (v) for all λ ∈ R and all v ∈ V
(ii) T (v1 + v2) = T (v1) + T (v2) for all v1,v2 ∈ V

(d) (5 pts) a basis for a subspace W of a vector space V

• A set of vectors {v1, . . . ,vk} is a basis for a subspace W if
(i) W = span (v1, . . . ,vk)
(ii) If w = c1v1 + · · ·+ ckvk, then coefficients c1, . . . , ck are unique.

2. For each of the following augmented matrices, describe the solution space of the corre-
sponding linear system. (Determine if there are solutions; and, if there are solutions, how
many free parameters are needed to describe the general solution.)

(a) (5 pts)


1 0 2 2
0 1 0 1
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
1
2
0
0


• The corresponding linear system has infinitely many solutions. Since columns 3 and

4 do not contain pivots, the solution will have 2 free parameters.

(b) (5 pts)


1 0 4
0 2 1
0 0 1
0 0 0

∣∣∣∣∣∣∣∣
1
2
1
0


• The corresponding linear system has a unique solution (no free parameters)

(c) (5 pts)


0 −1 0 1 2
0 0 2 0 1
0 0 0 0 0
0 0 0 0 0

∣∣∣∣∣∣∣∣
1
0
1
0


1
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• The corresponding linear system has no solution (the third row corresponds to the
equation 0 = 1, which is a mathematical contradiction).
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3. (10 pts) Compute the inverse of A =

 1 2 0
1 3 0
1 2 1


•

[A | I] =

 1 2 0 1 0 0
1 3 0 0 1 0
1 2 1 0 0 1

 R2 → R2 −R1

R3 → R3 −R1
−−−−−−−−−−−→

 1 2 0 1 0 0
0 1 0 −1 1 0
0 0 1 −1 0 1


R1 → R1 − 2R2−−−−−−−−−−−→

 1 0 0 3 −2 0
0 1 0 −1 1 0
0 0 1 −1 0 1

 =
[
I | A−1

]

⇒ A−1 =

 3 −2 0
−1 1 0
−1 0 1


4. (10 pts) Let W = {[x, y] ∈ R2 | x+ 2y = 3 ∈ R}. Prove or disprove that W is a subspace
of R2.

• Let w = [1, 1]. Since (1) + 2 (1) = 3, this vector is in W . Now consider the scalar
multiple of w by λ = 0. We have

(0)w = [0, 0]

but
(0) + (2) (0) = 0 6= 3

and so for this λ, λw /∈ W . This means W is not closed under scalar multiplication,
and so W is not a subspace.

5. Consider the following linear transformation: T : R3 → R2 : T ([x1, x2.x3]) = [x2 − x3 , x1 − x3].
(a) (10 pts) Find a matrix that represents T .

•

AT =

 ↑ ↑ ↑
T ([1, 0, 0]) T ([0, 1, 0]) T ([0, 0, 1])

↓ ↓ ↓

 =

[
0 1 −1
1 0 −1

]
(b) (10 pts) Find a basis for the kernel of T (i.e. the set of vectors x such that T (x) = 0).

•

ker (T ) = NullSp (AT ) = NullSp

([
0 1 −1
1 0 −1

])
= NullSp

([
1 0 −1
0 1 −1

])

= span

 1
1
1


⇒ basis for ker (T ) =


 1

1
1


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6. Consider the vectors {[1,−2, 2, 1], [1,−1, 3, 1], [0, 1, 1, 0], [2,−3, 5, 2]} ∈ R4

(a) (10 pts) Determine if these vectors are linearly independent.

• We form a matrix A using the given vectors as rows and row reduce A to Row
Echelon Form

1 −2 2 1
1 −1 3 1
0 1 1 0
2 −3 5 2

 row reduction−−−−−−−−−−→


1 0 4 1
0 1 1 0
0 0 0 0
0 0 0 0


since we have a zero row (or 2 zero rows), the original set of vectors are not linearly
independent.

(b) (5 pts) What is the dimension of the subspace generated by these vectors (i.e. the
subspace spanned by these vectors)?

• Since the REF of A has 2 non-zero rows, its row space is 2-dimensional. Since this
row space coincides with the subspace generated by the original list of vectors, this
subspace is also 2-dimensional

7. (a) (10 pts) Find the eigenvalues and the eigenvectors of the following matrix : A =

 2 2 0
0 0 1
0 0 2


•

pA (λ) = det

 2− λ 2 0
0 0− λ 1
0 0 2− λ

 = (2− λ)2 (−λ)

⇒ eigenvalues = {2, 0}
2-eigenspace

Eλ=2 = NullSp (A− 2I) = NullSp

 0 2 0
0 −2 0
0 0 0

 = NullSp

 0 1 0
0 0 0
0 0 0


=


 x1

0
x3

 | x1, x3 ∈ R

 = span

 1
0
0

 ,

 0
0
1


0-eigenspace

Eλ=0 = NullSp (A− (0) I) = NullSp

 2 2 0
0 0 1
0 0 2

 = NullSp

 1 1 0
0 0 1
0 0 0


=


 x2
x2
0

 | x2 ∈ R

 = span

 1
1
0


(b) (5 pts) What are the algebraic and geometric multiplicities of each eigenvalue of A.

• The algebraic multiplicity of an eigenvalue r is the number of factors of (λ− r) in the
characteristic polynomial pA (λ) of A. The geometric multiplicity of an eigenvalue
r is the dimension of the corresponding eigenspace (the number of basis vectors).
Thus,
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(c) (5 pts) Is this matrix diagonalizable?

• We need 3 linearly independent eigenvectors to diagonalize a 3 × 3 matrix. Since
we found three linearly independent eigenvectors (two for λ = 2 and one for λ = 0),
A is diagonalizable
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8. (15 pts) Let A be the matrix

[
1 3
−2 6

]
. Find a 2× 2 matrix C and a diagonal matrix

D such that C−1AC = D.

• We first need to find the eigenvalues and eigenvectors of A.

pA (λ) = det

(
1− λ 3
−2 6− λ

)
= (1− λ) (6− λ) + 6 = λ2 − 7λ+ 12

= (λ− 3) (λ− 4)

⇒ eigenvalues = {3, 4}
3-eigenspace

Eλ=3 = NullSp (A− (3) I) = NullSp

([
−2 3
−2 3

])
= NullSp

([
1 −3

2
0 0

])
= span

([
3
2
1

])
= span

([
3
2

])
4-eigenspace

Eλ=4 = NullSp (A− (4) I) = NullSp

([
−3 3
−2 2

])
= NullSp

([
1 −1
0 0

])
= span

([
1
1

])
The diagonal matrix D is formed from the eigenvalues of A and the diagonaliz-
ing matrix C is formed by using the eigenvectors of A as columns (following your
ordering of eigenvalues). Thus,

D =

[
3 0
0 4

]
, C =

[
3 1
2 1

]
9. (15 pts) Let v = [2, 1, 2] and let W = span ([0, 1, 1] , [1, 1, 0]). Find the orthogonal
decomposition v = vW + v⊥ of v with respect to the subspace W .

• Note that the two vectors generating W are linearly independent and so form a basis
BW = {[0, 1, 1] , [1, 1, 0]} for W .
• Next we need a basis for W⊥ = {v ∈ R3 | v ·w = 0 for all w ∈ W}. We have

W⊥ = NullSp

([
0 1 1
1 1 0

])
= NullSp

([
1 0 −1
0 1 1

])
= span

 1
−1
1


BW⊥ = {[1,−1, 1]}
• B = BW ∪ BW⊥ = {[0, 1, 1] , [1, 1, 0] , [1,−1, 1]} will be a basis for R3. We now

find the coordinates [c1, c2, c3] of v with respect to B, i.e., we solve

c1

 0
1
1

+ c2

 1
1
0

+ c3

 1
−1
1

 =

 2
1
2


 0 1 1 2

1 1 −1 1
1 0 1 2

 row reduction−−−−−−−−−−→

 1 0 0 1
0 1 0 1
0 0 1 1


⇒ c1 = 1 , c2 = 1 , c3 = 1
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And so

v =(1)

 0
1
1

+ (1)

 1
1
0

+ (1)

 1
−1
1


The sum of the first two vector terms on the right is vW and the last term is v⊥.
Thus,

vW =

 1
2
1

 , v⊥ =

 1
−1
1


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10. (10 pts) Find an orthonormal basis for the subspace W generated by the vectors
v1 = [1, 1, 1] and v2 = [1, 0, 1]

• We’ll first construct an orthogonal basis {o1,o2} from the basis {v1,v2} of W . Thus,
we take

o1 = v1 = [1, 1, 1]

and then construct a second orthogonal basis vector by removing from v2 the com-
ponent that runs parallel to o1

o2 = v2 −
o1 · v2

o1 · o1

o1 = [1, 0, 1]− 1 + 0 + 1

1 + 1 + 1
[1, 1, 1]

=
[

1
3
−2

3
1
3

]
We now have an orthogonal basis {o1,o2} for W , but it’s not an orthonormal basis
since the basis vectors do not have length 1. But this is easily remedied by dividing
the vectors oi by their lengths

√
oi · oi . Thus,

n1 =
o1√
o1 · o1

=
1√
3

[1, 1, 1] =

[
1√
3
,

1√
3
,

1√
3

]
n2 =

o2√
o2 · o2

=
3√
6

[
1
3
−2

3
1
3

]
=

[
1√
6
,− 2√

6
,

1√
6

]
And so our orthonormal basis is

{n1,n2} =

{[
1√
3
,

1√
3
,

1√
3

]
,

[
1√
6
,− 2√

6
,

1√
6

]}


