
LECTURE 2

Vector Space Geometry

1. Algebraic Definitions of Fundamental Geometric Objects

The purpose of this section is to establish the connections between our abstract algebraic formalism and
the familar geometric objects of plane geometry. This is a crucial topic since virtually all of our intuitive
understanding of linear algebra is based on geometrical visualizations. Luckily, however, the geometric
objects and concepts required are fairly simple (if not not mundane.).

First, let’s recall how we define lengths and angles for vectors in Rn (i.e., n-dimensional vectors).

Definition 2.1. We say two vectors v,w ∈Rn are parallel if |v ·w|= ‖v‖ ‖w‖. We say that two vectors
v,w ∈Rn are perpendicular if v ·w = 0. More generally, we define the angle θv,w between two vectors
v,w ∈Rn is

θv,w = cos−1

(
v ·w
‖v‖ ‖w‖

)
.

This definition is, of course, algebraic in nature. However, its geometrical implications are just what one
expects: two vectors are parallel if and only if their geometric representations point in the same or opposite
direction. In fact,

Theorem 2.2. Two vectors v,w ∈Rn are parallel if and only if there is a non-zero scalar r ∈ R such that
w = rv.

Or using the language of the preceding lecture: two vectors are parallel if and only if one is a scalar multiple
of the other.

Definition 2.3. The length (or magnitude) of a vector v = (v1, v2, . . . , vn) ∈ Rn is the number

‖v‖ ≡
√

(v1)
2

+ (v2)
2

+ · · ·+ (vn)
2

Definition 2.4. The zero vector, 0, in Rn is the vector (0, 0, . . . , 0) (i.e. the vector such that each of its
n components is zero).

One easily sees that

‖0‖ =

√
(0)

2
+ (0)

2
+ · · ·+ (0)

2
=
√

0 = 0

so the zero vector always has zero length. In fact, it is the only vector in Rn with this property.

Theorem 2.5. If v ∈ Rn and ‖v‖ = 0, then v = 0.

We shall next present a discussion of the basic geometric objects (Euclidean) geometry: points, lines, and
planes. To set this up, we begin with two abstract algebraic definitions.
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Definition 2.6. Given vectors v1,v2, . . . ,vk ∈ Rn and scalars r1, r2, . . . , rk we say that a vector of the
form

w = r1v1 + r2v2 + · · ·+ rkvk

is a linear combination of the vectors v1,v2, . . . ,vk with scalar coefficients r1, r2, . . . , rk

Definition 2.7. Given a set {v1,v2, . . . ,vk} of vectors in Rn, the span of v1,v2, . . . ,vk is the set of all
possible linear combinations of the vectors v1,v2, . . . ,vk.

span {v1,v2, . . . ,vk} = {r1v1 + r2v2 + · · ·+ rkvk | r1, r2, . . . , rk ∈ R}

1.1. Lines. There are two common geometrical ways of prescribing a straight line in a 3-dimensional
space.

• Given two distinct points p1,p2∈R3, there is a unique line passing through both p1 and p2.
• Given one point p0∈R3 and a direction v, there is a unique line passing through p0 with the

direction v.

In this course, we shall think of a lines sets of points of the following form

(2.1) ` = {x ∈ Rn | x = p0 + vt , t ∈ R}

The connection with the second geometrical description of a line is evident from the notation. To make
the connection with the first geometrical description, all we have to do is set p1 = p0 + v.

If we express the vectors x,p0, and v in terms of components; e.g.

x = (x1, x2, . . . , xn)

p0 = (p1, p2, . . . , pn)

v = (v1, v2, . . . , vn)

then we obtain from (2.1) the following parametric equation for a line

x1 = p1 + v1t

x2 = p2 + v2t

...

xn = pn + vnt

A special, but very important, case of a line in Rn is the span of a vector v. According to the definition
above this would be the set of vectors of the form

span {v} = {tv | t ∈ R}

That is to say, it is a line passing through the origin (p0 = 0) in the direction v.

1.2. Planes. Just as a line can be prescribed by specifying its direction and a single point on the line;
a plane can be prescribed by specifying a single point p0 lying in the plane and two distinct directions v,u
lying in the plane. In vector notation such a prescription takes the form

P =
{
x ∈ R3 | x = p0 + su + tv , s, t ∈ R

}
If we set

p0 = (p1, p2, . . . , pn)

u = (u1, u2, . . . , un)

v = (v1, v2, . . . , vn)
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then the relation x = p0 + us+ vt leads to the following parametric representation of the points in a plane

x1 = p1 + u1s+ v1t

x2 = p2 + u2s+ v2t

...

xn = pn + uns+ vnt

For general points p0 such planes do not in general pass through the origin. As in the case of lines, an
important special case is when p0 = 0, so that the associated plane does pass through the origin. In this
case, the plane may be thought of as a collection of vectors: indeed, it is the span of vectors u and v :

P = {x ∈ Rn | x = us+ vt , s, t ∈ R}

1.3. Hypersurfaces. It should now be pretty straightforward to generalize lines and planes to their
analogs in higher dimensions.

If p0 is a point in Rn and {v1,v2, . . . ,vk} is a set of distinct directions in Rn then the hypersurface passing
through the point p0 in the directions {v1,v2, . . . ,vk} is the set of points

P =
{
x ∈ R3 | x = p0 + s1v1 + s2v2 + · · ·+ skvk ; s1, s2, . . . , sk ∈ R

}
Again, a case of special note is when p0 = 0 in which case P is the span of the vectors {v1,v2, . . . ,vk}.

Remark 2.8. At this juncture perhaps something should be said as to why the span of a set of vectors is
such a special case of lines, planes, etc. The crucial point here is that if you have two vectors u and w
contained in the span of a set of vectors {v1,v2, . . . ,vk} then their sum, and in fact any linear combination
of u and w, will lie in the span of the vectors {v1,v2, . . . ,vk}. For

u ∈ span {v1,v2, . . . ,vk} ⇒ u = r1v1 + r2v2 + · · ·+ rkvk

w ∈ span {v1,v2, . . . ,vk} ⇒ w = s1v1 + s2v2 + · · ·+ skvk

so

u + w = (r1 + s1) v1 + (r2 + s2) v2 + · · ·+ (rk + sk) vk ⇒ u + w ∈ span {v1,v2, . . . ,vk}

Consider now two points p1 = (1, 2) and p2 = (3, 1) on the line

` = {(1, 2) + (2,−1)t | t ∈ R}

We have

p1 + p2 = (4, 3)

If this point lies on the line ` there must be a value of t such that

(2.2) (4, 3) = (1, 2) + (2,−1)t

or

4 = 1 + 2t

3 = 2− t

Solving the first equation for t yields

t =
3

2
but solving the second equation for t yields

t = −1

Obviously, we cannot find a value of t such that (2.2) holds; so the vector sum of two points on a line is
not, in general, another point on the line.
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2. Geometrical Properties of Dot Products

Theorem 2.9. (Cauchy-Schartz Inequality) If u,v ∈ Rn, then

|u · v| ≤ |u| |v|

proof : Let a = v · v and b = −u · v. If a = 0 then v · v = 0, hence v = 0 by the part 4 of Theorem 1.4
(Lecture 1). The inequality is thus trivially satisfied since both sides vanish identically when v = (0, 0, 0).
Now suppose a 6= 0. By the Theorem 1.4 we have

0 ≤ |au + bv| = (au + bv) · (au + bv)

= a2 (u · u) + 2ab(u · v) + b2(v · v)

= (v · v)
2

(u · u)− 2(v · v)(u · v)2 + (u · v)2(v · v)

= (v · v)
2

(u · u)− (v · v)(u · v)2

Dividing the extreme sides by a = (v · v) (which is allowed since we assuming at this point that a 6= 0), we
obtain

0 ≤ (v · v) (u · u)− (u · v)2

or
(u · v)

2 ≤ (v · v) (u · u) = |v|2 |u|2

Taking the positive square root of both sides now yields the desired inequality.

Theorem 2.10. (Triangle Inequality) If u,v ∈ Rn, then

|u + v| ≤ |u|+ |v|

proof : By the preceding theorem
u · v ≤ |u · v| ≤ |u| |v|

Thus,
|u + v|2 = |u|2 + 2u · v + |v|2 ≤ |u|2 + 2 |u| |v|+ |v|2 = (|u|+ |v|)2

Taking the square root of both sides yields

|u + v| ≤ |u|+ |v|


