LECTURE 8

Subspaces, Bases, and Linear Independence

1. Subspaces

DEFINITION 8.1. A subset W of R™ is said to be closed under vector addition if for all u,v € W,
u+v is also in W. If rv is in W for all vectors v.€ W and all scalars v € R, then we say that W is
closed under scalar multiplication. A non-empty subset W of R™ that is closed under both vector addition
and scalar multiplication is called a subspace of R™.

EXAMPLE 8.2. Let u = (1,0) and v = (0, 2) be vectors in R?. We can construct a subset that closed under
vector addition as follows.

Wo={weR"|w=ju+kv ; jk positive integers}
To see that this set is closed under vector addition, let w, w’ € Wy. Then
w = ju+kv
w = jlu+k'v
for some positive integers 7, k, ', and k’. But then there are positive integers j, k, 7/ and k' such that
w+w =(Gu+kv)+(Gut+tkv)=G+i)u+(k+k)veW
because both (j + ;') and (k + k') ar e positive integers if j, k, j’, and k' are positive integers.

The set Wy is not a subspace, however; because it is not closed under scalar multiplication. To see this,

note that the vector ) )
Zu=(=.0
= (29)

can not be represented as sum of u and v with positive integer coeflicients.

ExAMPLE 8.3. The preceding example, however, does provide a clue as to one way to constructing a
subspace. Let u = (1,0) and v = (0,2) be vectors in R2. Consider the set

W={weR"|w=ju+kv ; jkeR}

This is closed under vector addition because if w, w’ € W, then there are real numbers 7, s,7’ and s’ such
that

W = ru-+sv

~

w = ru+s'v
But then
w+w =@r+r ut(s+s)veW
since (r+ ') € Rand (s+ s’) € R. And, for any real number ¢
tw = (tr)u+ (ts)v e W
since (tr) € R and (ts) € R.

The following theorem generalizes this last example.

THEOREM 8.4. Let {vy,...,vi} be a set of vectors in R™. Then the span of {vi,...,vi} is a subspace of
R™.
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Proof. Recall that the span of a set of vectors is the set of all possible linear combinations of those vectors.
Set

W =span (vi,...,vi) ={w eR" |w=c;vi +cava+ - -+ cxVr ; c1,¢2,...,0 €ER}

Then for any vectors w,w’ € W we have

W = (C1V]+CVa+ -+ CpVg
! / / /
W = V1t Vot GV
for some choice of real numbers ¢,...,¢; and ¢}, ..., c). But then

wH+w =(c+d)vi+(cat+cy)va+ -+ (ck+c) v €W
and if ¢ is any real number
tw = (tc1)vy + (teg) vo + - -+ + (teg) vip € W

REMARK 8.5. We shall often refer to the span of a set {vy,..., vy} of vectors in R" as the subspace
generated by {vi,...,vi}.

2. Solutions of Homogeneous Systems

We now come to another fundamental way of realizing a subspace of R™.

DEFINITION 8.6. A linear system of the form Ax = 0 is called homogeneous.

A homogeneous linear system is always solvable since x = 0 is always a solution. As such, this solution
is not very interesting; we call it the trivial solution. A homogeneous linear system may possess other
non-trivial solutions (i.e. solutions x # 0), this is where we shall focus our attention today.

LEMMA 8.7. Suppose x1 and xo are solutions of a homogeneous system Ax = 0. Then so is any linear
combination rx; + sXa of X1 and Xs.

Proof. Since x; and x5 are solution of Ax = 0 we have

AX1 =0= AX2
But then
A (rx; +sx2) = A(rxy) + A(sx2)
= r(Ax;)+ s (Ax2)
= r0+s0
0

SO X1 + SX» is also a solution.

THEOREM 8.8. The solution space of a homogeneous linear system is a subspace of R™.

Proof. The preceding lemma demonstrates that the solution space of a homogeneous linear system is
closed under both vector addition (take » = 1 and s = 1 in the proof of the preceding lemma) and scalar
multiplication (let r be any real number and take s = 0, in the proof of the lemma) . Therefore, it is a
subspace of R™.
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3. Subspaces Associated with Matrices

DEFINITION 8.9. The row space of an m X n matriz A is the span of row vectors of A.

Since the row vectors of an m X n matrix are n-dimensional vectors, the row space of an m X n matrix is a
subspace of R".

DEFINITION 8.10. The column space of an m X n matriz A is the span of column vectors of A.

Since the column vectors of an m X n matrix are m-dimensional vectors, the column space of an m X n
matrix is a subspace of R™.

DEFINITION 8.11. The null space of an m x n matriz A is the solution set of homogeneous linear system
Ax =0.

By the theorem of the proceding section, the null space of an m x n matrix A will be a subspace of R™.

Consider now a non-homogeneous linear system

Ax=Db
The left hand side of such an equation is

ailr a1z -+ Qin T1 1171 + a12T2 + - - - A1 Ty

ag1 Qg2 -+ G2 T2 a21T1 + A22T2 + « -+ + G2, Ty

Am1 Am2 e Amn Tn Am1T1 + Am2T2 + -+ AmnTn
a11 a2 A1n
a21 a22 a2n

= 1 . + 2 . + -z

Am1 Am?2 Amn

The final expression on the right hand side is evidently a linear combination of the column vectors of A.
The consistency of the equation Ax = b then requires the column vector b to also lie within the span of
the column vectors of A. Thus we have

THEOREM 8.12. A linear system Ax = b is consistent if and only if b lies in the column space of A.

4. Bases

Consider the subspace generated by the following three vectors in R3:

1 1 0
V] = 0 y Vo = 1 y V3 = -1
1 0 1

It turns out that this is the same as the subspace generated from just v and vy. To see this note that

0 1 1
V3 = 1 =10 |—-|1|=vi+(-1)vy
-1 1 0
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But any vector w in span (v1, va, vg) is expressible in the form

W = (V] + vy +c3vs

c1vi + cava +c3 (Vi — Va)
(c1 4 c3) vi+ (ca —c3) Vo

span (v1,vsa)

m

For reasons of effficiency alone, it is natural to try to find the minimum number of vectors needed to specify
every vector in a subspace W. Such a set will be called a basis for W.

There is also another reason to be interested in basis vectors. Consider the vector

2
w=|1
1
Note that
1 1 0 3—140 2
3vi—vo—2v3=3|0|—-|1|-2| -1 |=[0-142|=|1|=w
1 0 1 3+0-—2 1
and
1 1 0 24440 2
—2vi+4vo+3vy =-20 |+4]| 1 | +3| -1 | = 0+4-3 =11 |=w
1 0 1 —-24+0+3 1

And so, in terms of the vectors vy, vo, and vg, we can write w either as
w =3v] — Vg — 2v3

or as
w = —2vy + 4vy + 3vs

On the other hand, there is only one way to represent w as a linear combination of the vectors v; and vs.
For the condition w = ¢1v1 — cava requires

2 1 1 c1 + Co
1 =C1 0 + co 1 = C2
1 1 0 c1

is equivalent to the following linear system

c1+c = 2
Cy = 1
C1 =1

which obviously is ¢; = 1 and ¢, = 1 as its only solution.

This motivates the following definition.

DEFINITION 8.13. Let W be a subspace of R™. A subset {wi,wa, - , Wi} of W is called a basis for W if
every vector in W can be uniquely expressed as linear combination of the vectors wi, wWa, -+, Wp.

THEOREM 8.14. A set of vectors {w1,wa, -+ , Wy} is a basis for the subspace W generated by {w1, wa, -+ , Wi}
if and only if

riW1 + ToWg + - + 1w =0 implies 0=r; =19 ="--- =71}

Proof.
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= Suppose {w1,wa, -+, Wy} is a basis for W = span (w1, wa, -+ ,wy). Then every vector in W can
be uniquely specfied as a vector of the form

V=7T1Wi1+7o2Wg + -+ 4+ T W 3 T17’I"2,...,T’kER

In particular, the zero vector

(8.1) 0= (0)wy+ (0)wa +---+ (0)wy
lies in W. Because {w1,wa, -+, Wy} is assumed to be a basis, the linear combination on the right hand
side of (8.1) must be the unique linear combination of the vectors wy, ..., wy, that is equal to 0. Hence,
riwy +1rowWo + -+ rpwr =0 implies O0=ri=ro=---=r1y
<= Suppose
riwy +rowa + -+ 1w =0 implies 0=r;=r9="---=1}
We want to show that {w1, ws,--- , wg} is a basis for W = span (w1, wa, -+, wy). In other words, we need
to show that there is only one choice of coefficients 71, ..., 7, such that a vector v € W can be expressed in

the form v =rywy + rows + -+ + rpwy.  Suppose there were in fact two distinct ways of representing v :

(82) V. = 7MW+ 1roWo+ - Wy

(8.3) V. = S1Wi+ SoWo + -+ 5wy
Subtracting the second equation from the first yields
0=(r;1—s1)wi+ (12— s2)wao+ -+ (rg — sk) Wk

Our hypothesis now implies

O=r1—81=1r9—8y="++-=7r — Sk
In other words
T1 = S1
T2 = S92
Tk = Sk

and so the two linear combinations on the right hand sides of (8.2) and (8.3) must be identical.

THEOREM 8.15. Let A be an n x n matriz. Then the following statements are equivalent.

(1) The linear system Ax =b has a unique solution for each vector b € R™.
(2) The matriz A is row equivalent to the identity matriz.

(3) The matriz A is invertible.
(4) The column vectors of A form a basis for R™.

Proof. We have already demonstrated the equivalence of statements 2, 3 and 4 in our discussion of linear
systems. It therefore suffices to show that statement 4 is equivalent to statement 1.

To see that statement 4 implies statement 1, suppose that the column vectors ¢, cs, ..., ¢, of A form a basis
for R™. Then by Theorem 7.12, the linear system Ax = b is consistent for all vectors b € span (c1,...,c,) =
R™. But a direct calculation reveals

b=Ax=1x1¢c1 +x9C3 + -+ 2,Cp,

Because the vectors cq,...,c, form a basis, there choice of coefficients x1,xs,...,2, must be unique.
Therefore, the linear system Ax = b has a unique solution for each vector b € R".
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On the other hand, suppose the linear system Ax = b has a unique solution for each vector b € R". In
particular, this must be true for b = 0. Therefore, there is only one choice of coefficients x1, x2, ..., x, such
that

0 = 21C1 + X2C2 + -+ + XTpCp = Ax

By the preceding theorem we can conclude that the column vectors of A form a basis for R™.

EXAMPLE 8.16. Show that the vectors vi = (1,1,3), vo = (3,0,4), and vz = (1,4, —1) form a basis for R3.

By the preceding theorem, it suffices to show that the matrix

1 3 1
A=|1 0 4
3 4 -1
is invertible. Row reducing A yields
1 3 1 1 3 1 1 3 1
- 5
10 4 }52:52_3% 0 -3 3 | RywRy—2Ry |0 -3 3
3 4 -1 3 3 ! 0 —5 —4 S RN 0 0 -9

The matrix on the far right is upper triangular so it’s obviously invertible. Hence, A is invertible; hence
the column vectors of A form a basis for R3; hence the vectors vi, Vo, and v3 form a basis for R3.

The preceding theorem is applicable only to square matrices A and linear systems of n equations in n
unknowns. It can be extended to more general matrices and linear systems in the following manner.

THEOREM 8.17. Let A be an m X n matriz. Then the following are equivalent.

(1) Each consistent system Ax =b has a unique solution.

(2) The reduced row echelon form of A consists of the n x n identity matriz followed by m —n rows
containing only zeros.

(3) If A’ is a row-echelon form of A then A’ has as many columns as pivots.

(4) The column vectors of A form a basis for the column space of A.

Proof.

1 <= 2 : From Theorem 5.8 of Lecture 5 (Theorem 1.7 in text), we know that a consistent linear system
Ax = b has a unique solution if and only if A is row equivalent to a matrix A’ in row-echelon form such
that every column of A’ has a pivot. Since A, and hence A’, has n columns, we can conclude that the
solution of every consistent linear system Ax = b is unique if and only if we have must have n pivots. In
order to have n pivots the number m of rows must be > n. When n = m there will be one pivot for each
row, and the pivots will all reside along the diagonal, like so

a1l aiz -+ Gin
0 ap -+ a2

AI
0 0 ce apm

occuring in at least n rows. If A’ is further reduced to a matrix A” in reduced row-echelon form, then
all the pivots are re-scaled to 1 and all the entries above the pivots are equal to 0. Thus,

01 -« 0
A= . =1

If m > n, we still require n pivots, that means the only way we can consistently add rows to the picture
above is by adding rows without pivots; i.e., rows containing only 0’s.
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1 <= 3 : Suppose Ax = b has a unique solution for each b in the column space C'(A) of A. (Recall b
must lie in the column space of A in order for the linear system to be consistent.) Then, if we denote the
column vectors of A by cq1,cs,...,c, we have

b=Ax=ux1c; +29¢2+ - +ax4c, , forallbeC(A)=span(cy,ca,...,Cp)

If the solution x is unique, then there is only one such linear combination of the column vectors c; for each
vector b € C'(A). Hence, the column vectors c; provide a basis for C(A). On the other hand, if the column
vectors were not a basis for C(A) = span (c1,ca,...,cy), then that would mean that there are vectors b
lying in C(A) such that the expansion b = x;¢1 +22¢2+ - - -+ 2,C,, in terms of the ¢; is not unique. Hence,
a solution x to Ax = b would not be unique.

THEOREM 8.18. Let Ax = b be a non-homogeneous linear system, and let p be any particular solution of
this sytem. Then every solution of Ax = b can be expressed in the form

x=p+h

where h is a solution of the corresponding homogeneous system Ax = 0.

Proof. Suppose p and x; are both solutions of Ax = b. Then set
h=x;-p
Then h satisfies
Ah=A(x;—-p)=Ax;—Ap=b—-b=0
Hence, x; = p + h with h a solution of Ax = 0.



