
LECTURE 8

Subspaces, Bases, and Linear Independence

1. Subspaces

Definition 8.1. A subset W of Rn is said to be closed under vector addition if for all u,v ∈ W ,
u + v is also in W . If rv is in W for all vectors v ∈ W and all scalars r ∈ R, then we say that W is
closed under scalar multiplication. A non-empty subset W of Rn that is closed under both vector addition
and scalar multiplication is called a subspace of Rn.

Example 8.2. Let u = (1, 0) and v = (0, 2) be vectors in R2. We can construct a subset that closed under
vector addition as follows.

W0 = {w ∈ Rn | w = ju + kv ; j, k positive integers}
To see that this set is closed under vector addition, let w,w′ ∈W0. Then

w = ju + kv

w′ = j′u + k′v

for some positive integers j, k, j′, and k′. But then there are positive integers j, k, j′ and k′ such that

w + w′ = (ju + kv) + (j′u + k′v) = (j + j′)u + (k + k′)v ∈W

because both (j + j′) and (k + k′) ar e positive integers if j, k, j′, and k′ are positive integers.

The set W0 is not a subspace, however; because it is not closed under scalar multiplication. To see this,
note that the vector

1

2
u =

(
1

2
, 0

)
can not be represented as sum of u and v with positive integer coefficients.

Example 8.3. The preceding example, however, does provide a clue as to one way to constructing a
subspace. Let u = (1, 0) and v = (0, 2) be vectors in R2. Consider the set

W = {w ∈ Rn | w = ju + kv ; j, k ∈ R}
This is closed under vector addition because if w,w′ ∈ W , then there are real numbers r, s, r′ and s′ such
that

w = ru + sv

w′ = r′u + s′v

But then
w + w′ = (r + r′)u + (s + s′)v ∈W

since (r + r′) ∈ R and (s + s′) ∈ R. And, for any real number t

tw = (tr)u + (ts)v ∈W

since (tr) ∈ R and (ts) ∈ R.

The following theorem generalizes this last example.

Theorem 8.4. Let {v1, . . . ,vk} be a set of vectors in Rn. Then the span of {v1, . . . ,vk} is a subspace of
Rn.
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Proof. Recall that the span of a set of vectors is the set of all possible linear combinations of those vectors.
Set

W = span (v1, . . . ,vk) ≡ {w ∈ Rn | w = c1v1 + c2v2 + · · ·+ ckvk ; c1, c2, . . . , ck ∈ R}

Then for any vectors w,w′ ∈W we have

w = c1v1 + c2v2 + · · ·+ ckvk

w′ = c′1v1 + c′2v2 + · · ·+ c′kvk

for some choice of real numbers c1, . . . , ck and c′1, . . . , c
′
k. But then

w + w′ = (c1 + c′1)v1 + (c2 + c′2)v2 + · · ·+ (ck + c′k)vk ∈W

and if t is any real number

tw = (tc1)v1 + (tc2)v2 + · · ·+ (tck)vk ∈W

Remark 8.5. We shall often refer to the span of a set {v1, . . . ,vk} of vectors in Rn as the subspace
generated by {v1, . . . ,vk} .

2. Solutions of Homogeneous Systems

We now come to another fundamental way of realizing a subspace of Rn.

Definition 8.6. A linear system of the form Ax = 0 is called homogeneous.

A homogeneous linear system is always solvable since x = 0 is always a solution. As such, this solution
is not very interesting; we call it the trivial solution. A homogeneous linear system may possess other
non-trivial solutions (i.e. solutions x 6= 0), this is where we shall focus our attention today.

Lemma 8.7. Suppose x1 and x2 are solutions of a homogeneous system Ax = 0. Then so is any linear
combination rx1 + sx2 of x1 and x2.

Proof. Since x1 and x2 are solution of Ax = 0 we have

Ax1 = 0 = Ax2

But then

A (rx1 + sx2) = A(rx1) + A(sx2)

= r (Ax1) + s (Ax2)

= r0 + s0

= 0

so rx1 + sx2 is also a solution.

Theorem 8.8. The solution space of a homogeneous linear system is a subspace of Rn.

Proof. The preceding lemma demonstrates that the solution space of a homogeneous linear system is
closed under both vector addition (take r = 1 and s = 1 in the proof of the preceding lemma) and scalar
multiplication (let r be any real number and take s = 0, in the proof of the lemma) . Therefore, it is a
subspace of Rn.
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3. Subspaces Associated with Matrices

Definition 8.9. The row space of an m× n matrix A is the span of row vectors of A.

Since the row vectors of an m× n matrix are n-dimensional vectors, the row space of an m× n matrix is a
subspace of Rn.

Definition 8.10. The column space of an m× n matrix A is the span of column vectors of A.

Since the column vectors of an m × n matrix are m-dimensional vectors, the column space of an m × n
matrix is a subspace of Rm.

Definition 8.11. The null space of an m× n matrix A is the solution set of homogeneous linear system
Ax = 0.

By the theorem of the proceding section, the null space of an m× n matrix A will be a subspace of Rn.

Consider now a non-homogeneous linear system

Ax = b

The left hand side of such an equation is
a11 a12 · · · a1n
a21 a22 · · · a2n
... · · ·

. . .
...

am1 am2 · · · amn




x1

x2

...
xn

 =


a11x1 + a12x2 + · · · a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn



= x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·xn


a1n
a2n

...
amn


The final expression on the right hand side is evidently a linear combination of the column vectors of A.
The consistency of the equation Ax = b then requires the column vector b to also lie within the span of
the column vectors of A. Thus we have

Theorem 8.12. A linear system Ax = b is consistent if and only if b lies in the column space of A.

4. Bases

Consider the subspace generated by the following three vectors in R3:

v1 =

 1
0
1

 , v2 =

 1
1
0

 , v3 =

 0
−1
1


It turns out that this is the same as the subspace generated from just v1 and v2. To see this note that

v3 =

 0
1
−1

 =

 1
0
1

−
 1

1
0

 = v1 + (−1)v2
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But any vector w in span (v1,v2,v3) is expressible in the form

w = c1v1 + c2v2 + c3v3

= c1v1 + c2v2 + c3 (v1 − v2)

= (c1 + c3)v1 + (c2 − c3)v2

∈ span (v1,v2)

For reasons of effficiency alone, it is natural to try to find the minimum number of vectors needed to specify
every vector in a subspace W . Such a set will be called a basis for W .

There is also another reason to be interested in basis vectors. Consider the vector

w =

 2
1
1


Note that

3v1 − v2 − 2v3 = 3

 1
0
1

−
 1

1
0

− 2

 0
−1
1

 =

 3− 1 + 0
0− 1 + 2
3 + 0− 2

 =

 2
1
1

 = w

and

−2v1 + 4v2 + 3v3 = −2

 1
0
1

+ 4

 1
1
0

+ 3

 0
−1
1

 =

 −2 + 4 + 0
0 + 4− 3
−2 + 0 + 3

 =

 2
1
1

 = w

And so, in terms of the vectors v1, v2, and v3, we can write w either as

w = 3v1 − v2 − 2v3

or as

w = −2v1 + 4v2 + 3v3

On the other hand, there is only one way to represent w as a linear combination of the vectors v1 and v2.
For the condition w = c1v1 − c2v2 requires 2

1
1

 = c1

 1
0
1

+ c2

 1
1
0

 =

 c1 + c2
c2
c1


is equivalent to the following linear system

c1 + c2 = 2

c2 = 1

c1 = 1

which obviously is c1 = 1 and c2 = 1 as its only solution.

This motivates the following definition.

Definition 8.13. Let W be a subspace of Rn. A subset {w1,w2, · · · ,wk} of W is called a basis for W if
every vector in W can be uniquely expressed as linear combination of the vectors w1,w2, · · · ,wk.

Theorem 8.14. A set of vectors {w1,w2, · · · ,wk} is a basis for the subspace W generated by {w1,w2, · · · ,wk}
if and only if

r1w1 + r2w2 + · · ·+ rkwk = 0 implies 0 = r1 = r2 = · · · = rk

Proof.
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⇒ Suppose {w1,w2, · · · ,wk} is a basis for W = span (w1,w2, · · · ,wk). Then every vector in W can
be uniquely specfied as a vector of the form

v = r1w1 + r2w2 + · · ·+ rkwk ; r1, r2, . . . , rk ∈ R

In particular, the zero vector

(8.1) 0 = (0)w1 + (0)w2 + · · ·+ (0)wk

lies in W . Because {w1,w2, · · · ,wk} is assumed to be a basis, the linear combination on the right hand
side of (8.1) must be the unique linear combination of the vectors w1, . . . ,wk that is equal to 0. Hence,

r1w1 + r2w2 + · · ·+ rkwk = 0 implies 0 = r1 = r2 = · · · = rk

⇐ Suppose

r1w1 + r2w2 + · · ·+ rkwk = 0 implies 0 = r1 = r2 = · · · = rk

We want to show that {w1,w2, · · · ,wk} is a basis for W = span (w1,w2, · · · ,wk). In other words, we need
to show that there is only one choice of coefficients r1, . . . , rk such that a vector v ∈W can be expressed in
the form v =r1w1 + r2w2 + · · ·+ rkwk. Suppose there were in fact two distinct ways of representing v :

v = r1w1 + r2w2 + · · ·+ rkwk(8.2)

v = s1w1 + s2w2 + · · ·+ skwk(8.3)

Subtracting the second equation from the first yields

0 = (r1 − s1)w1 + (r2 − s2)w2 + · · ·+ (rk − sk)wk

Our hypothesis now implies

0 = r1 − s1 = r2 − s2 = · · · = rk − sk

In other words

r1 = s1

r2 = s2
...

rk = sk

and so the two linear combinations on the right hand sides of (8.2) and (8.3) must be identical.

Theorem 8.15. Let A be an n× n matrix. Then the following statements are equivalent.

(1) The linear system Ax = b has a unique solution for each vector b ∈ Rn.
(2) The matrix A is row equivalent to the identity matrix.
(3) The matrix A is invertible.
(4) The column vectors of A form a basis for Rn.

Proof. We have already demonstrated the equivalence of statements 2, 3 and 4 in our discussion of linear
systems. It therefore suffices to show that statement 4 is equivalent to statement 1.

To see that statement 4 implies statement 1, suppose that the column vectors c1, c2, . . . , cn of A form a basis
for Rn. Then by Theorem 7.12, the linear system Ax = b is consistent for all vectors b ∈ span (c1, . . . , cn) =
Rn. But a direct calculation reveals

b = Ax = x1c1 + x2c2 + · · ·+ xncn

Because the vectors c1, . . . , cn form a basis, there choice of coefficients x1, x2, . . . , xn must be unique.
Therefore, the linear system Ax = b has a unique solution for each vector b ∈ Rn.
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On the other hand, suppose the linear system Ax = b has a unique solution for each vector b ∈ Rn. In
particular, this must be true for b = 0. Therefore, there is only one choice of coefficients x1, x2, . . . , xn such
that

0 = x1c1 + x2c2 + · · ·+ xncn = Ax

By the preceding theorem we can conclude that the column vectors of A form a basis for Rn.

Example 8.16. Show that the vectors v1 = (1, 1, 3), v2 = (3, 0, 4), and v3 = (1, 4,−1) form a basis for R3.

By the preceding theorem, it suffices to show that the matrix

A =

 1 3 1
1 0 4
3 4 −1


is invertible. Row reducing A yields 1 3 1

1 0 4
3 4 −1

 R2 → R2 −R1

R3 → R3 − 3R1
−−−−−−−−−−−−−→

 1 3 1
0 −3 3
0 −5 −4

 R3 → R3 −
5

3
R2

−−−−−−−−−−−−→

 1 3 1
0 −3 3
0 0 −9


The matrix on the far right is upper triangular so it’s obviously invertible. Hence, A is invertible; hence
the column vectors of A form a basis for R3; hence the vectors v1, v2, and v3 form a basis for R3.

The preceding theorem is applicable only to square matrices A and linear systems of n equations in n
unknowns. It can be extended to more general matrices and linear systems in the following manner.

Theorem 8.17. Let A be an m× n matrix. Then the following are equivalent.

(1) Each consistent system Ax = b has a unique solution.
(2) The reduced row echelon form of A consists of the n × n identity matrix followed by m − n rows

containing only zeros.
(3) If A′ is a row-echelon form of A then A′ has as many columns as pivots.
(4) The column vectors of A form a basis for the column space of A.

Proof.

1 ⇐⇒ 2 : From Theorem 5.8 of Lecture 5 (Theorem 1.7 in text), we know that a consistent linear system
Ax = b has a unique solution if and only if A is row equivalent to a matrix A′ in row-echelon form such
that every column of A′ has a pivot. Since A, and hence A′, has n columns, we can conclude that the
solution of every consistent linear system Ax = b is unique if and only if we have must have n pivots. In
order to have n pivots the number m of rows must be ≥ n. When n = m there will be one pivot for each
row, and the pivots will all reside along the diagonal, like so

A′ =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann


occuring in at least n rows. If A′ is further reduced to a matrix A′′ in reduced row-echelon form, then
all the pivots are re-scaled to 1 and all the entries above the pivots are equal to 0. Thus,

A′′ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = I

If m > n, we still require n pivots, that means the only way we can consistently add rows to the picture
above is by adding rows without pivots; i.e., rows containing only 0’s.
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1 ⇐⇒ 3 : Suppose Ax = b has a unique solution for each b in the column space C(A) of A. (Recall b
must lie in the column space of A in order for the linear system to be consistent.) Then, if we denote the
column vectors of A by c1, c2, . . . , cn we have

b = Ax ≡ x1c1 + x2c2 + · · ·+ xncn , for all b ∈ C(A) ≡ span (c1, c2, . . . , cn)

If the solution x is unique, then there is only one such linear combination of the column vectors ci for each
vector b ∈ C(A). Hence, the column vectors ci provide a basis for C(A). On the other hand, if the column
vectors were not a basis for C(A) ≡ span (c1, c2, . . . , cn), then that would mean that there are vectors b
lying in C(A) such that the expansion b = x1c1 +x2c2 + · · ·+xncn in terms of the ci is not unique. Hence,
a solution x to Ax = b would not be unique.

Theorem 8.18. Let Ax = b be a non-homogeneous linear system, and let p be any particular solution of
this sytem. Then every solution of Ax = b can be expressed in the form

x = p + h

where h is a solution of the corresponding homogeneous system Ax = 0.

Proof. Suppose p and x1 are both solutions of Ax = b. Then set

h = x1 − p

Then h satisfies
Ah = A (x1 − p) = Ax1 −Ap = b− b = 0

Hence, x1 = p + h with h a solution of Ax = 0.


