
LECTURE 9

Construction of Bases, Linear Independence and Dimension

A subspace W (for example, the solution set of a set of homogeneous linear equations) can be generated
by taking linear combinations of a set of vectors {w1, . . . ,wk}. The purpose of this lecture is address the
question: given a fixed subspace W , how do we know when we’ve picked enough vectors w1, . . . ,wk ∈ W
so that we can represent every other vector in W uniquely in terms of a particular linear combination of
the wi? In the language of Lecture 7, how do we know we have a basis for W?

1. Constructing a Basis for a Span of Vectors

Let w1, . . . ,wk be vectors in Rn, and let

(9.1) W ≡ span (w1, . . . ,wk) ≡ {w ∈ Rn | w = c1w1 + c2w2 + · · ·+ ckwk ; c1, . . . , ck ∈ R}

Suppose {w1, . . . ,wk} is not a basis for W , then by Theorem 8.14 (Lecture 8), we know that we must have
a non-trivial solution of

(9.2) 0 = r1w1 + r2w2 + · · ·+ rkwk

that is, a solution for which at least one of the ri does not equal zero. Without loss of generality (e.g. by
reordering the vectors wi) we can assume it is the last coefficient rk that does not vanish. Then we can use
(9.2) to express wk in terms of the vectors w1, . . . ,wk−1

wk = − 1

rk
(r1w1 + r2w2 + · · ·+ rk−1wk−1)

It is then easy to see that the smaller set of vectors {w1, . . . ,wk−1} also generate W : for w ∈W implies

w = c1w1 + · · ·+ ck−1wk−1 + ckwk

= c1w1 + · · ·+ ck−1wk−1 −
ck
rk

(r1w1 + r2w2 + · · ·+ rk−1wk−1)

=

(
c1 −

ckr1
rk

)
w1 +

(
c2 −

ckr2
rk

)
w2 + · · ·+

(
ck−1 −

ckrk−1
rk

)
wk−1

∈ span (w1,w2, . . . ,wk−1)

In other words, if {w1, . . . ,wk} is not a basis, we can always find a smaller subset of vectors that generate
same subspace. The converse to this statement is also true: if we can not find a smaller (i.e., proper) subset
of vectors that generate the subspace W = span (w1, . . . ,wk), then the vectors w1, . . . ,wk form a basis for
W .

Example 9.1. Find a basis for W = span (w1,w2,w3) ⊂ R2 where

w1 =

[
1
2

]
, w2 =

[
1
1

]
, w3 =

[
−2
−1

]
• First we look for nontrivial solutions of

(9.3) r1w1 + r2w2 + r3w3 = r1

[
1
2

]
+ r2

[
1
1

]
+ r3

[
−2
−1

]
=

[
0
0

]
= 0

1



1. CONSTRUCTING A BASIS FOR A SPAN OF VECTORS 2

This vector equation is equivalent to the following linear system

r1 + r2 − 2r3 = 0

2r1 + r2 − r3 = 0

or the following augmented matrices[
1 1 −2
2 1 −1

∣∣∣∣ 0
0

]
R2 → R2 − 2R1−−−−−−−−−−−→

[
1 1 −2
0 −1 3

∣∣∣∣ 0
0

]
R1 → R1 +R2

R2 → −R2
−−−−−−−−−−−−→

[
1 0 1
0 1 −3

∣∣∣∣ 0
0

]
or

r1 + r3 = 0
r2 − 3r3 = 0

}
⇒

{
r1 = −r3
r2 = 3r3

for some r3 ∈ R

Taking r3 = 1 we thus have a solution with r1 = −1 and r2 = 3. Indeed,

(−1)

[
1
2

]
+ 3

[
1
1

]
+

[
−2
−1

]
=

[
−1 + 3 = 2
−2 + 3− 1

]
=

[
0
0

]
So

−w1 + 3w2 + w3 = 0 ⇒ w3 = w1 − 3w2

Because we can express w3 as a linear combination of w1 and w2

W ≡ span (w1,w2,w3) = span (w1,w2)

and perhaps {w1,w2} is a basis for W .
To see if {w1,w2} is indeed a basis, we repeat the calculation above. We first look for non-

trivial solutions of

(9.4) r1w1 + r2w2 = 0

or

r1 + r2 = 0

2r1 + r2 = 0

The corresponding augmented matrix is[
1 1
2 1

∣∣∣∣ 0
0

]
R2 → R2 − 2R1−−−−−−−−−−−→

[
1 1
0 −1

∣∣∣∣ 0
0

]
R1 → R1 +R2

R2 → −R2
−−−−−−−−−−−−→

[
1 0
0 1

∣∣∣∣ 0
0

]
which corresponds to a linear system with only one solution

r1 = 0

r2 = 0

Since we can’t find non-trivial solutions of (9.4), we conclude that {w1,w2} is a basis for span (w1,w2) =
span (w1,w2,w3) ≡W .

The following definition formalizes the ideas behind this construction of bases.

Definition 9.2. Let {w1, . . . ,wk} be a set of vectors in Rn. A dependence relation among the wi is an
equation of the form

r1w1 + r2w2 + · · ·+ rkwk = 0 , with at least one ri 6= 0.

If such a dependence relation exists, the set {w1, . . . ,wk} is a linearly dependent set of vectors. If such
a dependence relation does not exist,then the vectors w1, . . . ,wk are said to be linearly independent.
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2. Dimensions of Subspaces

Lemma 9.3. Suppose S is a subspace generated by k vectors v1, . . . ,vk (in other words, S = span (v1, . . . , vk)).
Then any set {w1, . . . ,w`} of ` vectors in S, wth ` > k, is linearly independent.

Proof. This is proved by induction. I’ll show here only the first step of the proof - this at least shows you
the basic idea behind the Lemma. Suppose k = 1. Then S would be of the form

S = span {v1} = {λv1 | λ ∈ R}

Now suppose w1,w2 ∈ S. Then for some choice of numbers λ, ρ we have

w1 = λv1 and w2 = ρv2

To show that {w1w2} are linearly dependent, we just need to show that we can solve 0 = x1w1 + x2w2

without setting both x1 = 0 and x2 = 0. But

0 = x1w1 + x2w2 = x1λv1 + x2ρv1 = (x1λ+ x2ρ)v1

but this we can achieve by setting x2 = −
(
λ
ρ

)
x1.

Corollary 9.4. Any two bases B = {v1, . . . ,vk} and B′ = {w1, . . . ,w`} of a subspace S of Rn have the
same number of vectors.

Proof. From the fact that both B and B′ are bases for S we know

(i) S = span (v1, . . . ,vk) and {v1, . . . ,vk} are linearly independent
(ii) S = span (w1, . . . ,w`) and {w1, . . . ,w`} are linearly independent.

Consider S as span (v1, . . . ,vk). If ` > k, then by the preceding lemma, the vectors {w1, . . . ,w`} would
have to be linearly dependent. But that contradicts (ii). So ` ≤ k.

Reversing the roles of {v1, . . . ,vk} and {w1, . . . ,w`} in the preceding paragraph, we can similarly conclude
k ≤ `. But then

` ≤ k and k ≤ ` ⇒ k = `

Definition 9.5. Let W be a subspace of Rn. The number of elements in any basis for W is the dimension
of W .

Theorem 9.6. Existence and Determination of Bases

(1) Every subspace of W of Rn has a basis and dim(W ) ≤ n.
(2) Every linearly independent set of vectors in Rn can be enlarged, if necessary, to become a basis for

Rn.
(3) If W is a subspace of Rn and dim(W ) = k, then

(a) every linearly independent set of k vectors in W is a basis for W.
(b) every set of k vectors in W that spans W is a basis for W .

3. Bases for Subspaces Associated to Matrices

Let A be an m× n matrix.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 amn · · · amn


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Recall that the column space of A is the subspace of Rm spanned by the columns of A :

ColSp (A) = span (c1, c2, . . . . , cn) ⊂ Rm

where ith column vector ci is defined by

(ci)j ≡ aji , j = 1, . . . ,m

Recalll also that the row space of A is the subspace of Rn spanned by the rows of A:

RowSp (A) = span (r1, r2, . . . , rm) ⊂ Rn

where the ith row vector is defined by

(ri)j = aij , j = 1, . . . , n

A priori there is no particular relationship between the column space of A and the row space of A; indeed,
they are not even subspaces of the same space.

Lemma 9.7. If a matrix A′ is row equivalent to a matrix A then the row space of A′ is equal to the row
space of A.

Proof . First we note that row operations can be built up from row operartions of the following form

(1) Rij (λ1, λ2) :

{
ri → r′i = λ1ri + λ2rj i = j

ri → r′i = ri , i 6= j
, λ1 6= 0

For example, the interchange of ith and jth rows can be carried out as{
ri
rj

}
Rij(1, 1)
−−−−−→

{
r′i = ri + rj
r′j = rj

}
Rji(−1, 1)
−−−−−−−→

{
r′′i = r′i = ri + rj
r′′j = −r′j + r′i = ri

}
Rij(1,−1)
−−−−−−−→

{
r′′′i = r′′i + r′′j = rj

r′′′j = r′′j = ri

}
while the other two elementary row operations can be viewed as simply special cases of the row operation
(1).

Now suppose v is a vector lying in the span of row vectors of A. I will show that it also lies in the span
of the row vectors of the matrix A′ obtained by applying the row operation (1) to A.

v ∈ span (r1, r2, . . . , rm) ⇒ v = c1r1 + · · ·+ ciri + · · ·+ cjrj + · · ·+ cmrm

= c1r
′
1 + · · ·+ ci

(
1

λ1
(r′i − λ2rj)

)
+ · · ·+ cjr

′
j + · · ·+ cmr′m

= c1r
′
1 + · · ·+

(
ci
λ1

)
r′i + · · ·+

(
cj −

ciλ2
λ1

)
r′j + · · ·+ cmr′m

∈ span (r′1, . . . , r
′
m)

Thus, the row spaces of A and A′ are the same. If A′ is row equivalent to A, then by definition there must
be a sequence of row operations that converts A into A′.

A→ A(1) → A(2) → · · · → A(k) = A′

From the preceding paragraph, we know at each intermediate stage we haveRowSp
(
A(i)

)
= RowSp

(
A(i+1)

)
so we conclude

RowSp (A′) = RowSp (A)

Lemma 9.8. Let A be an m× n matrix and let A′ be its reduction to row echelon form. Then the non-zero
rows of A′ form a basis for the row space of A.

The basis idea underlying the proof of this lemma is best illustrated by an example. Suppose A is a 4× 5
matrix that is row equivalent to the following matrix in reduced row-echelon form

A′′ =


1 1 0 0 3
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0





3. BASES FOR SUBSPACES ASSOCIATED TO MATRICES 5

Clearly the span of the row vectors of A′ is just the span of the first three row vectors (that is to say, the
contribution of the last row to the row space of A is just 0). On the other hand, it’s clear the only way we
can satisfy

0 = c1r1 + c2r2 + c3r3

is by taking c1 = c2 = c3 = 0; because that’s the only way to kill off the components of the total sum
that come from the pivots of r1, r2 and r3 (that is, we can’t force a cancellation of terms coming from two
different rows because only the pivot row will have a non-zero entry in the component corresponding to a
column with a pivot). Thus,

0 = c1r1 + c2r2 + c3r3 ⇒ c1 = c2 = c3 = 0

⇒ {r1, r2, r3} is a basis for span (r1, r2, r3) = RowSp (A′′) = RowSp (A)

However, this isn’t quite the statement of the lemma. For the lemma says the row vectors of a matrix in
(un-reduced) echelon form should be a basis for the row space of A. However, we can conclude this simply
by noting that

dim (RowSp(A)) = number of vectors in a basis for RowSp (A)

= number of non-zero rows in reduced echelon-form A′′ of A

= number of non-zero rows in an echelon-form A′ of A

But because the row vectors of the matrix in echelon-form span RowSp (A), and because the number of
these row vectors is the same as the dimension of RowSp (A), we can use Statement 3(b) of Theorem 9.6
(at the end of Lecture 9) to conclude that the row vectors of A′ form a basis for RowSp (A).

Lemma 9.9. Let A be an m× n matrix and let A′ be its reduction to row echelon form. Then the columns
of A corresponding to the columns of A′ containing the pivots of A′ form a basis for the column space of
A.

Sketch of Proof. To find a basis for the column space, it would suffice to find a subset of linearly independent
column vectors that spanned the entire column space. Let w1, . . . ,wn be the columns of A. A dependence
relation among the wi would be a non-trivial solution of

(1) c1w1 + · · ·+ cnwn = 0

whose augmented matrix would be 
a11 · · · · · · a1n
...

. . .
...

...
. . .

...
am1 · · · · · · amn

∣∣∣∣∣∣∣∣∣∣
0
...
...
0


But if A′ is a matrix in reduced row-echelon form obtained from A by row reduction, then [A′ | 0] will
correspond to an equivalent set of equations (that is to say, it will have exactly the same solutions as (1)).
But when a matrix is in reduced row-echelon form, the dependence relations among its columns is manifest:
the columns with pivots are always distinct standard basis vectors and the columns without a pivot can
always be expressed in terms of the columns with pivots.1 Thus, dependent columns of A′ will be the

1Consider the following matrix in reduced row echelon form.

A′ =

 1 0 2 0 1

0 1 −1 0 2
0 0 0 1 −1


Notice that the columns with pivots (columns 1, 2 and 4) are just the standard basis vectors [1, 0, 0], [0, 1, 0], and [0, 0, 1] written

vertically; and that the columns without pivots can be expressed as linear combinations of these standard basis vectors. For
example, the fifth column can be written as 1

2
−1

 =

 1

0
0

 + 2

 0

1
0

−

 0

0
1


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columns that don’t contain pivots, and the columns that do contain pivots will be the linearly independent
columns of A′. But since the dependence relations among the columns of A′ must be the same as the
dependence relations among the columns of A (because the augmented matrices of each correspond to
equivalent sets of equations), the independent columns of A will correspond to the columns of A′ that
contain pivots.

Let’s demonstrate how this lemma is applied by an example.

Example 9.10. Find a basis for the column space of

A =


0 1 0 1
1 1 0 0
−1 0 2 1
1 2 2 1


• First we row reduce A to row-echelon form

R1 ↔ R2

R3 → R3 +R2

R4 → R4 +R3
−−−−−−−−−−−−→


1 1 0 0
0 1 0 1
0 1 2 1
0 2 4 2

 R3 → R3 −R2

R4 → R4 − 2R3
−−−−−−−−−−−−−→


1 1 0 0
0 1 0 1
0 0 2 0
0 0 0 0


The last matrix is a row-echelon form of A. It has pivots in the 1st, 2nd, and 3rd columns.
Therefore, the 1st, 2nd, and 3rd columns of the original matrix A will form a basis for the column
space of A:

ColSp (A) = span




0
1
−1
1

 ,


1
1
0
2

 ,


0
0
2
2




4. The Rank of a Matrix

Theorem 9.11. Let A be an m×n matrix. The dimension of the row space of A is equal to the dimension
of its column space.

This follows easily from the preceding two lemmas since the number of non-zero rows in a matrix in row-
echelon form is exactly equal to the number of columns containing pivots. This theorem leads to the
following definition.

Definition 9.12. The rank of a matrix is the dimension of its row space (which equals the dimension of
its column space).

Recall that the null space an m× n matrix A is the subspace of Rn corresponding to the solution space of
Ax = 0.

Theorem 9.13. Let A be an m× n matrix. Then

n = [number of columns of A] = dim [Null space of A] + rank (A)

To see why this theorem must be true, consider the following simple example.

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


So the fifth column depends on columns 1, 2, and 4. It turns out that if A′ is in reduced row echelon form, then its columns

without pivots can always be expressed as linear combinations of its columns with pivots.
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This matrix is already in reduced row-echelon form. It has three pivots so

rank(A) = dim (RowSp(A)) = dim (ColSp(A)) = 3

The dimension of its null space is evidently 1 since the solution of the corresponding homogeneous linear
system Ax = 0 implies 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0



x1
x2
x3
x4

 =


0
0
0
0
0

 ⇒

 x1 = 0
x2 = 0
x3 = 0

but leaves x4 undetermined. Hence, the dimension of the null space of A is 1. Thus,

4 = number of columns of A = 3 + 1 = (rank of A) + (dim (null space of A))

In the next lecture we shall develop a geometric interpretation of this fundamental fact.


