LECTURE 10

Linear Transformations

1. Functions between Sets

Let A be an m x n matrix. The goal of this lecture is to develop a geometric interpretation for homogeneous
linear systems of the form Ax = b.

First let me recall some basic notions about maps between two sets. Let X and Y be sets. A function
f: X — Y is a rule that associates with each element x € X an element f(y) € Y. The set X is called the
domain of the function f and the set Y is called the codomain (or target set) of f. The set

{yeY |y= f(x) for some z € X}
is called the image of the function f, and if W is a subset of Y, then the set
frW) ={ze X | f(z) e W}

is called the inverse image of W under f.

2. Linear Transformations

We shall now restrict our attention to the following kinds of maps.
DEFINITION 10.1. A function T : R™ — R™ is called a linear transformation if it satisfies

(1) T(u+v) =T (u)+ T(v) (ie. the function T preserves vector addition)
(2) T (rv) =7rT(v) (i.e., the function T preserves scalar multiplication)

for all vectors u,v € R™ and all scalars r € R.

It is easy to see that if a mapping preserves both vector addition and scalar addition, then it will also
preserve any combination of such operations; that is to say, it will preserve arbitrary linear combinations of
vectors

T (rivi +reve+ -+ 1vE) =7m1T (vi) + 72T (va) + - + 7T (Vi)
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ExAMPLE 10.2. Show that the transformation T : R? — R3 : (s,¢) — (¢,5,1+t+s) is not a linear
transformation.
e Let v = (s,t) Then
T(v) = T(st)=(ts,1+t+59)
T (rv) = T(rs,rt)=(rt,rs,1+rs+rt)
# r(t,s,1+t+s)=rT(v)
and so T does not preserve scalar multiplication: hence it is not a linear transformation.

ExXAMPLE 10.3. Let A be an n x m matrix. To any vector in R™, we can associate an m x 1 column vector
x, and via multiplication from the left by A, a n x 1 column vector

aix o Qim 1 1121+ + A1mTm
Ax = | : U : =1|: e R"

ap1 Anm Tm an1T1 + -+ QT

Define Ty : R™ — R™ by
Ty (x) = Ax

Then

T(Ax) = A(x) =X x=)T(x)

T(Xl +X2) = A(Xl +X2) = Az, + Axo :T(X1)+T(X2)

and so T is a linear transformation.

3. Linear Transformations and Matrices

The last example says that to an nxm matrix Awe can also associate a linear transformation Tx : R™ — R™.
We shall now show that the converse is also true: to every linear transformation 7' : R™ — R™ we can
associate an n X m matrix Ar such that

T(x)=Arx for all x € R™

LEMMA 10.4. Let T : R™ — R™ be a linear mapping and let B = {b1,bs,...,b,} be a basis for R™. Then
every vector in the image of T can be written as a linear combination of the vectors T (by), T (bz),..., T (by).

Proof. Since B is a basis for R", any vector v € R" can be expressed as
v =riby +r3bs 4+ --- +1r,b,
And so the image of a vector v by T will be expressible as

T (V) = T (lel + T2b2 + -+ rnbn)
= rT(by)+ 7T (bg)+---+7,T(bg) (since T is a linear transformation)

O

THEOREM 10.5. Let T : R™ — R™ be a linear transformation, let {e; | i =1,...,n} be the standard basis

for R™:
(ei)a'{ 0, j#i
and let A be the m x n matriz whose i'" column coincides with T (e;) € R™. Then

T (x) = Ax
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In other words, every linear transformation T : R™ — R™ is equivalent to the matrix mulitiplication of the
vectors x € R™ by an m X n matrix A. The converse of this fact is also true, if A is an m X n matrix and
T : R" — R™ is the mapping defined by

xeR” - Ax e R™
then T is a linear transformation.

ExXAMPLE 10.6. Find the matrix corresponding to the linear transformation T : R? — R? given by
T (z1,22) = (z1 — 22,21 + T2, 21).

e We have
T(e;) = T(1,00=(1-0,140,1)=(1,1,1)
T(GQ) = T(071):(071704’170):(717170)
Hence
1 -1
A=[T(e1), T(er)]=|1 1
1 0
We confirm
1 -1 x r1 — T2
Ax=|1 1 [ 1}— r1+xy | =Tx
1 0 2 1

4. Subspaces associated with linear transformations

Recall that we had three natural subspaces associated with a matrix A; its row space, its column space
and its null space. As we have just seen, every linear transformation corresponds to a matrix, and so there
should also be three natural subspaces associated to a linear transformation 7. This turns out to be the
case, but we shall postpone the connection with matrices for the time being, and instead give some more
intrinsic definitions.

DEFINITION 10.7. The kernel of a linear transformation T : R™ — R™ is the set of all x € R™ such that
Tx =0¢cR™.
ker (T) ={x e R™ | T (x) =0}

LeMMA 10.8. The kernel of a linear transformation T : R™ — R™ is a subspace of R™.

Proof. ker (T) is obviously a subset of R™. We need to show that it’s closed under scalar multiplication
and vector addition. Let A € R and x € ker(T') be arbitary elements of their respective sets. Then
T (Ax) = AT (x), since T is a linear transformation. But T (x) = 0 since x € ker (T'). So T'(Ax) = 0.
We conclude that if A € R, and x € ker(T), then Ax € ker (T'), and so ker (T) is closed under scalar
multiplication.

Now let x1,x2 be arbitrary vectors in ker (7'). Then since T is a linear transformation, T (x1 + x2) =
T (x1) + T (x2) =040 =0 and so x1 + x2 € ker (T'). Thus, ker (T) is closed under vector addition.

Since ker (T) is a subset of R™ that is closed under both scalar multiplication and vector addition, it is a
subspace of R™. O

DEFINITION 10.9. The image or range of T is the set of ally € R™ such thaty = T (x) for some x € R™.
range(T)={y e R" |y =T (x) for somex € R™}

LeMMA 10.10. The range of a linear transformation T : R™ — R™ is a subspace of R™.
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Proof. We need to show that range (T') is closed under both scalar multiplication and vector addition.

Suppose y € range (T). Then there must be an x € R such that y = T (x). But then Ax € R™ and
T (Ax) = AT (x) = Ay
and so Ay is in range (T). Hence, range (T) is closed under scalar multiplication.
Suppose y1,y2 € range (T'). Then there must be vectors x1,x5 € R™ such that y; = T (x1) and yo = T (x2).
Now apply T to the vector sum x; + xa:
T(x1+x2) =T (x1) + T (x2) =y1 +y2
This displays y1 + y2 as an element of range (T').

Since range (T) C R™ is closed under both scalar multiplication and vector addition, it is a subspace of
R™. O
Now let A be the m x n matrix corresponding to a linear transformation T : R” — R™. Then
ker (T) = {xeR"|T(x)=0}
= {xeR"|Arx =0} = Null space of Ap

range(T) = {yeR"|y=T(x) , forsomexeR"}
= {yeR™|y=Arx , forsomex €R"} = column space of Ap

Note also that the dimension n of the domain R™ of T is same as the number of columns in the corresponding
matrix A. Now from Theorem 10.6 of Lecture 10 we know

(number of columns of A) = (dimension of null space of A) + (dimension of column space of A)
In terms of notions of linear transformations this translates to
(dimension of domain of T) = (dimension of kernel of T) + (dimension of range of T)
ExaMPLE 10.11. Consider the linear transformation T : R?* — R* given by
T (21,22, 23) = (21 + 23,21 + T2 + 223, —21 + X2, 222 + 223)

Find a basis for the kernel of T and a basis for the range of T.

e Let’s first find the matrix representation of T. We have

T(e;) = T(1,0,0)=(1+0,0+0+2(0),—1+1,2(0) +2(0)) = (1,1,-1,0)
T(ez) = T(0,1,0)=(0+0,0+1+2(0),-0+1,2(1)+2(0)) =(0,1,1,2)
T(es) = T(0,0,1)=(0+1,0+0+2(1),-0+0,2(0)+2(1)) =(1,2,0,2)
and so the linear transformation T corresponds to the 4 x 3 matrix
1 01
A= j1 } (2)
0 2 2

As we pointed out above the kenel of T is the same as the null space of A and the range of T is
the same thing as the column space of A. To find the null space and column space of a matrix we
first row reduce A to reduced row-echelon form

1 01 101 101
112 01 1 o1 1|
A=l 43 1 0l 7lo11]7]ooo|=A
0 2 2 01 1 00 0
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From Lecture 10 (Lemma 10.3) we know that the column space of the matrix A is spanned by the
columns in A which correspond to columns in the row-echelon form A’ that contain pivots. Thus,

1

range of T = column space of A = span EEE
0

The kernel of T can be identified with the null space of A, which is equal to the null space of
A’: ie, the solution set

N = = O

1+ x3=0
To+x3=10 Tl = —T3
0=0 - { Ty = —3
0=0
SO )
—xs3 -1
x=| —x3 | =23 | —1
I3 1 ]
-1
ker (T') = span -1
1

5. Composition of Linear Transformations

Suppose we have two linear transformations

T, : R*"—R™

T, : R™—>RP
Because every element in the range of T; can be regarded as an element in the domain of T the composed
mapping

TooT1:R"->RP ; xeR* +— Ty(Ti(x)) €R?
is well defined, and, in fact, is another linear transformation. Indeed, if we switch back to our matrix
language, where the transformations T; : R — R™ and T : R™ — RP are implemented by, respectively,
an m X n matrix A; and an p X m matrix As, then to the composed transformation Ty o T; : R™ — RP we
have the following matrix:
A =AxA

Note that this matrix multiplication is also well-defined since the number m of columns of A, is the same
as the number m of rows of Aj.

ExaMPLE 10.12. Consider the linear transformation corresponding to a rotation in the xy plane by an angle
0

z — ' =wxcos(f) + ysin(h)
y — 1y = —wsin(h) + ycos(0)
To this linear transformation corresponds the following 2 x 2 matrix:

A= o) o))

If we apply this transformation twice, the effect should be that of a two rotations by the angle . We thus
should have

| cos(26)  sin(20)
(10.1) AA = [ —sin (20) cos(26)
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Calculating the matrix multiplication on the left hand side:
cos(f)  sin(6) cos(0) sin(f) | [ cos?(0) —sin?(0)  2cos(6)sin (0))

—sin(0) cos(6) } [ —sin (0) cos(6) } N [ —2cos () sin (A)  cos? (§) — sin? (6)
Comparing (10.1) with (10.2) we see we must have

cos (20) = cos®(6) —sin® ()

sin (20) = cos(0)sin (0)
We have thus, by a simple matrix calculation, rederived the double angle trig identities one learns in high
school.

(102) AA=



