LECTURE 11

Review Session for Second Midterm

I. Formal Definitions

A.

B.

Dimension

The dimension of a subspace W is the number of vectors in any basis for W.

Row Space

The row space of an n X m matrix A is subspace of R corresponding to the span of the
row vectors of A.

Column Space

The column space of an n X m matrix A is the subspace of R™ corresponding to the span
of the column vectors of A.

Null Space

The null space of an n x m matrix A is the solution set of the linear system Ax = Ogm

. Rank

The rank of an n x m matrx A is the common dimension of its row and column spaces.
Linear Transformation:
A linear transformation is a function 7" : R™ — R"™ such that

(i) T (Ax) = AT (x) for all x € R™.

(ii) T (x1 +x2) =T (x1) + T (x2) for all x;,x2 € R™
Range
The range of a linear transformation 7' : R™ — R"™ is the following subset of the codomain
RTL

Range (T) ={y e R" | y =T (x) for some x € R"}

. Kernel

The kernel of a linear transformation 7" : R™ — R™ is the following subset of the domain
Rm
Ker(T)={xe€R" | T (x) = Ogn}

II. Using row reduction to identify bases for subspaces
III. Working with Linear Transformations

A.
B.
C.

Proving a subset of R™ is a subspace of R".
Constructing the n x m matrix attached to a linear transformation 7' : R™ — R"™
Finding the range and kernel of a linear transformation

IV. Determinants

A.
B.
C.
D.

Calculating Determinants using cofactor expansions
Calculating Determinants using row reduction
Solving square linear systems via Crammer’s Rule
Inverting square matrices using cofactors
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Math 3013
SAMPLE SECOND EXAM

1. Write down the formal definitions of the following notions:
(a) a linear transformation from R™ to R™

(b) the range of a linear transfomation 7" : R™ — R"

(c) the kernel of a linear transformation 7" : R™ — R"

2. Consider the following mapping: 7 : R® — R? : T ([x1, 72, x3]) = [v2, 21 — 23] . Show that T is a linear
transformation.

3. Suppose T is the linear transformation from R? to R* given by

T ([x1,22,23)) = [v1 + 22, —x1 + 23, T2 + 23, 0]
(a) Find the matrix A7 such that T (x) = Ax for all x € R3.
(b) Find a basis for the range of T
(¢) Find a basis for the kernel of T.

4. Compute the following determinants by the indicated method

0 4 -3 2

(a) det (1) ? g é via row reduction
00 0 1
1 -1 1

(b)ydet | 0O 0 2 | via a cofactor expansion
1 1 1

5. Use Crammer’s Rule to solve the following linear system.
201 +2x9 = 5

T —rTy = —2

6. Find the cofactor matrix of the following matrix A and then use the cofactor matrix to compute A1,

1 0 2
A= 01 0
1 0 3
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Math 3013
SOLUTIONS TO SAMPLE SECOND EXAM

1. Write down the formal definitions of the following notions:

(a) a linear transformation from R™ to R™

e A linear transformation from R™ to R" is a function 7" : R™ — R"™ such that

T (X1 + Xg)
T (A\x)

T(x1)+ T (x2)

AT (x)

(b) the range of a linear transfomation 7" : R™ — R"

for all x1,x5 € R™
forall A € R and all x € R™

e The range of a linear transformation 7" : R™ — R"™ is the set

Range (T) ={y € R" |y =T (x) for some x € R} C R"

(c) the kernel of a linear transformation 7" : R™ — R"

o The kernel of a linear transformation 7' : R™ — R" is the set

Ker(T) = {x € R™ | T (x) =0} C R™

2. Consider the following mapping: T : R® — R? : T ([, 72, x3]) = [x2, 71 — 23] . Show that T is a linear

transformation.

T()\ [1’1,%2,%3}) = T([)\:cl, )\%2, )\1’3]) = [)\ZL’Q, )\1’1 — )\1[,’3] = [1’2,1’1 — 1'3] = )\T([l’l,l'g,x;ﬂ)

T (x+x') =T ([z1 + 27,22 + 2, w3 + 25]) = [w2 + 29, (21 + &) — (23 + 25)] = [v2, 21 — w3]+[2, 27 — 25

= T(Mx) =T (x)

/

Since T preserves scalar multiplication and vector addition, 7" is a linear transformation.

3. Suppose T is the linear transformation from R3 to R* given by

T ([x1,x2,23)) = [v1 + 22, —1 + 23, T2+ 23, O]

(a) Find the matrix Az such that T (x) = Ax for all x € R3.

e We first calculate the action of 7" on the standard basis vectors for the domain R? :

T (e1)
T (e2)
T (e3)

T([1,0,0]) =[1,-1,0,0]

7([0,1,0]) = [1,0,1,0]
7 ([0,0,1]) = [0,1,1,0]

Converting these to columns gives us the matrix Ap

Ar =

(b) Find a basis for the range of T

N
T (e1)
d

T (e2)

/r.
!

4
T (e3)
1

O~ O

O = = O

| =T (x)+T (x')
O
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e The range of T is equivalent to the column space of Ar. To find the latter we first row reduce
A1 to reduced row echelon form:

1 1 0 1 0 -1
-1 0 1 . 01 1

0 1 1 row reduction 00 o0

0 0 0 0 0 O

Since we only have pivots in the first two columns of the row echelon form, the first two columns
of A will provide a basis for the column space of Ar, and so also (once reinterpreted as vectors
in R?) a basis for the range of T :

1
-1
0
0

1
basis for ColSp (Ar) = , (1) = Dbasis for Range (T') = {[1,-1,0,0] , [1,0,1,0]}
0

(c) Find a basis for the kernel of T.

e The kernel of T will correspond to the null space of the matrix Ar (i.e., the solution set of
Arx = 0). Since we have already row reduced Ar to a reduced row echelon form in part (b)
above, we can use that RREF for Ar to determine a basis for the null space of Ap:

1 0 -1 x1 —23=0

. 0 1 1 . . To+x3=0
NullSp (A1) = NullSp 00 0 = solution set of 0=0
0 0 O 0=0

Since the third column of the RREF does not contain a pivot, x3 is to be regarded as a free
parameter. Writing the general solution vector in terms of the free parameter we get

T3 1
X = —x3 = I3 -1
T3 1
We can now conclude
1
basis for NullSp (A;) = -1 = basis for Ker (T) = {[1,-1,1]}
1

4. Compute the following determinants by the indicated method

0 4 -3 2
(a) det (1) ? g ; via row reduction
00 0 1
e We have
0 4 -3 2 11 2 2
0 2 0 1 02 0 1
det| g o | Ml omdet g gy
00 0 1 0 0 0 1
1 1 2 2
0 2 0 1
R3 — R3 — 2R2 — det 00 -3 -9
0 0 O 1
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(the sign flip because we interchanged rows)

-1
(b) det 0
1

via a cofactor expansion

— O
— N =

e Cofactor expansion along the second row:

det (} _(1)1 % = (0)(=1)*"! det( _11 } >+(0) (—1)2+ det< 1 } >+(2) (—1)2+3 det( } 11 >

= 04+0+(-2)(2)
= 4

5. Use Crammer’s Rule to solve the following linear system.
2:61 + Xy = 5

r1 — Ty = —2

e Casting this 2 x 2 linear system in the form Ax = b, we have

a=(3h) ()
m- (G h) e (50

Crammer’s Rule says that the components x1, zs of the solution vector are given by

and

T qer(ay 0 b2
Now
det(A) = (2)(-1)—-(1)(1)=-3
det (B1) = (5)(~1)— (1)(-2) = -3
det(B2) = (2)(=2)-(5)(1)=-9
and so
-3
xr, = _73 =1
-9
To = ?3 =3

6. Find the cofactor matrix of the following matrix A and then use the cofactor matrix to compute A 1.
1 0 2

A= 01 0

1 0 3

e We first note that (by a cofactor expansion along the second row of A)

det(A)—0+(1)(1)2+2det< 1 g )+0—1

The entries of the cofactor matrix of A are given by

cij = (=1)"" det (Ay)
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where A;; is the zy)th minor of A. Thus,

(
1 0 0 0 0 1
c11 = (—1)1+1 det( 0 3 ) =3 , cpp= (—1)1+2det( 1 3 ) =0 , c3= (—1)1+3det( 1 0 ) =-1
0 2 1 2 1 0
C21 = (—1)2+1 det < 0 3 ) = 0 5 Coo = (—1)2+2 det < 1 3 ) =1 5 Co3 — (—].)2Jﬁ3 det ( 1 0 > = 0
0 2 1 2 1 0
C31 = ( 1)3+1 det < 1 0 ) = -2 y C32 = (71)34_2 det ( 0 0 > =0 y C33 = ( 1)3+3 det ( 0 1 > =1
Thus,
3 0 -1
C= 0 1 0
-2 0 1
and
1 1 3 0 -2 3 0 -2
Atlt=———ct=-| 0 1 0 |=| 0 1 0
det (A) P\ 210 1 10 1



