LECTURE 12

Determinants

1. Determining when a square matrix has an inverse

Thus far, the quickest way we have to determine if a given (square) matrix has an inverse or not is by
row-reducing the matrix to a row-echelon form and seeing whether or not every column of the row-echelon
form has a pivot. This method is not very satisfactory because if you want to consider a set of matrices you
have to apply the above algorithm to each matrix individually. What we develop in this lecture is a simple
function of the entries of a matrix whose value will tell you whether or not the matrix is invertible. In what
follows we will denote by M, the set of n x n matrices.

Let’s start with the simplest case; that of a 1 x 1 matrix. Clearly,
A = [a]

is invertible if and only if @ # 0. If define a function det : M; — R, det([a]) = a. then A is invertible
if and only if det (A) = 0. (Do not be put off by the apparent tautology of this example, its generalization
will be much more substantial.)

Now let’s consider the case of a generic 2 X 2 matrix
a b
St
Let’s try to row reduce this matrix to row echelon form.
a b c a b
[fa) momein G ia)

Note that if d — £b = 0, or equivalently, if ad — bc # 0, the matrix will not be row reducible to the identity
matrix (because the last row in its row echelon form will be a zero roow). On the other hand, if ad—bc # 0,
then the matrix can be row-reduced to the identity matrix and hence invertible. So if we set

([ )

then a 2 x 2 matrix A is invertible if and only if det (A) # 0.

In this lecture we shall define a function det : M,, — R of the entries of an n X n matrix which will have
the property that

det (A) #0 & A is invertible

2. General Determinants

The formula for the determinant of a general n x n will in general involve n! separate terms; thus, the
determinant for a 4 x 4 matrix will involve 4! = 24 terms, and the determinant for a 5 x 5 matrix will involve
5!' = 60 terms! Rather than giving an explicit formula for the higher order determinants, we’ll present an
recursive definition.
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DEFINITION 12.1. Let A = [a;;] be an n x n matriz. The minor matrix corresponding to the entry a;j is
the (n — 1) x (n — 1) matriz formed from A by deleting the i*" row and j** column of A.

DEFINITION 12.2. The determinant of a 1 x 1 matriz is its sole entry. Let A = [a;;] be an n X n matriz.
The cofactor C;; of a;; is (—1)"7 times the determinant of the minor matriz M;; corresponding to a;;.
Cij = (=1)" det (Ay)

The determinant of A is

aix @iz - Qin
det (A) = a’21 a?2 = a11C11 + a12C12 + a13C13 + -+ + a1, C1p
apl  Ap2 - Qpn
ExaMmpLE 12.3. Calculate the determinant of the following matrix.
1 2 0 1
-1 0 1 2
A= 0o 1 -1 2
1 1 1 0
e We have
_11(2)(1); 0 1 2 -1 1 2 -1 0 2 -1 0 1
01712:(1)1—12—(2)0—12+(0)012—(1)01—1
1 1 1 0 1 1 0 1 1 0 1 10 1 1 1
Now
0 1 2
1 -1 2| = (0 -2 - (1) L2 +(2) -1 =0-(0-2)+2(1+1)=6
1 0 10 1 1
1 1 0
-1 1 2
-1 2 0 2 0 -1
0 -1 2 = (—1)' ‘—(1)' ‘4—(2)' ‘:—(—2)—(—2)—1-2(1):6
1 0 10 1 1
1 1 0
-1 0 1
1 -1 0 -1 0 1
0 1 -1 = (—1)' ‘—(0)' '—I—(l)‘ ‘:—(1+1)+0+(—1):—3
1 1 1 1 1 1
1 1 1
So
1 2 0 1
-1 0 1 2
0 1 -1 2 = (1)(6) - (2)(6> +0— (_3) =-3
1 1 1 0

3. An even more general formula for det (A)

In the recursive definition of the determinant we have an expansion of the determinant in terms of the
entries and minors of the first row of the matrix. There is nothing special about the first row, however.
One can also express the determinant of the matrix in terms of the entries and minors of any of its rows. In
fact, one can express the determinant of a matrix in terms of the entries and minors of any of its columns.
DEFINITION 12.4. Let A be an n x n matriz. The ij'" cofactor C;; is (—1)i+j times the determiant of the
it minor of A o
Cij = (—1)""7 det (M)

THEOREM 12.5. Suppose A is an n X n matriz with entries {a;;}1<i<n

1<j<n
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e Ifi is any row indexr of A then
n n . .
det (A) = ZaijCij = Zaij (1) det (M;;) (sums are over the column index j)
Jj=1 Jj=1
e If j is any column index of A then

det (A) = Z a;;Ci; = Zaij (—=1)"* det (M;j) (sums are over the row index i)
i=1 i=1

These formulas are convenient to use when a particular row or column of A has a lot of zeros.

ExaMPLE 12.6. Compute det (A) where

11 0 1
2 0 1 2
A= 00 -1 2
10 1 O

Notice that the second column has only one non-zero entry. We’ll choose to expand the determinant along
that column.

det (A) = a1 (—1)"* det (Mr2) + a2z (~1)*" det (Mas) + azz (—1)*" det (Mso) + asa (—1)"* det (Maz)
= (1) (=1)" det (M) + (0) (—=1)*"* det (Maz) + (0) (—1)* det (Mz) + (0) (=1)*** det (Myo)
2 1 2
= —det (M) = —det 0 -1 2
1 0 0
To compute that last determinant it is convenient to expand along the bottom row
2 1 2
det || 0 =1 2 = (1) (=1)*"det (Ms1) + (0) (=1)>"2 det (Msz) + (0) (=1)**3 det (Ms3)
10 0

- @MM@)(M<{£1§})2(®4

We conclude that

2 1 2 1 9
det (A) = —det 0 -1 2 :—det<{ ]>:—4

4. Computing determinants by row reduction

The following theorem tells us how the elementary row operations affect the determinant of a matrix.

THEOREM 12.7. Suppose A is an n X n matrizc

(1) If A’ is a matriz obtained from A by interchanging two of its rows then det (A') = —det (A).

(2) If A is a square matriz and A’ is a matriz obtained from A by multiplying one of its rows by a
scalar v then det (A’) = rdet (A)

(3) If A is a square matriz and A’ is a matriz obtained from A by adding a scalar multiple of one
row to another, then det (A’) = det (A).

The above theorem tells us what effect each of the elementary row operations has on the determinant of a
matrix. We also have
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LEmMMA 12.8. If A is an n X n matriz in row echelon form then det (A) is equal to the products of the
entries along the diagonal.

We won’t prove this theorem in general. However, the basic idea underlying this theorem is easily demon-
strated by a simple example.

ExampLE 12.9. Compute the determinant of

1 2 3 4
05 6 7
A=1l00 8 9
00 0 10
We have
é g 2 i 5 6 7 06 7 05 7 0 5 6
008 ol = M08 91208 9/+(3)[00 9 |- 0038
0 0 0 10 0 0 10 0 0 10 0 0 10 00 0
8 9 0 9 0 8
8 9 0 9 0 8
0 9 0 9 00
@ (0] 10\(5)\0 10\+<7)'0 OD
0 8 0 0 0 0
ICIFMECIFR OIS
= (1) ((5)(8)(10) + (6)(0) + (7)(0)) — (2) ((0)(8)(9) — (6)(0) + (7)(0))
+(3) ((0)(0) = (5)(0) + (7)(0)) — (4) ((0)(0) — (5)(0) + (6)(0))
(1)(5)(8)(10) +0+04+0+0+04+0+0+0+0+0+0
= (1)(5)(8)(10)

Combining the theorem and lemma above we can now conclude

COROLLARY 12.10. If A is an n X n matriz and A’ is a row-echelon form of A obtained without row

rescalings, then
n

det (A) = (—1) [
i=1
where j is the total number of row-interchanges that occured in row-reducing A to A’. Here []]'_, al; is the
total product of the diagonal entries of A’.

COROLLARY 12.11. A square matriz A is invertible if and only if det (A) # 0.
THEOREM 12.12. If A is a square matriz and AT is its transpose, then
det (AT) = det (A)

THEOREM 12.13. The determinant of a product of two square matrices is equal to the product of their

determinants:
det (AB) = det (A) det (B) .

THEOREM 12.14 (Crammer’s Rule). Suppose A is an invertible n xn matriz and b € R™. Then the (unique)
solution to the n x n linear system Ax = b is given by
_det (By)
YT et (A)

where B; is the n X n matrix obtained from A by replacing the i

=1,...,n

th_column of A with the column vector b.
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ot

ExAMPLE 12.15. Use Crammer’s Rule to solve

L]

We have
F 5
A = 1 3 = det(A)=3+2=5
C 1 2:
B, = = det(B;)=-3+8=5
__4 3_
f 5
B, = 1 3 = det(By)=3+2=5
So the solution of Ax = b will be
xl_det(Bl):Ezl 7 l‘z_det(B2):_—5:—1

~ det(A) 5 ~ det(A) 5
And sure enought x = [1, —1] solves the original linear system.
THEOREM 12.16.

DEFINITION 12.17. Let A be an n x n matriz. The cofactor matriz A’ of A is the n X n matriz whose
entries consists of the cofactors of A:

(A'),; = Cy = (1) det (M)
DEFINITION 12.18. The adjoint of an n X n matriz A is the n X n matriz defined by
adj (A) = (A')"

THEOREM 12.19. Let A be an invertible matriz, then

1
-1 _ (A
det () “Y (A
ExamMpPLE 12.20. Use the preceding theorem to calculate the inverse of
2 1 4
A=1]3 2 5
01 -1
We first need to determine the cofactors of A
TS B | (2 5 _
011 = ( 1) det(_ 1 -1 :|> =7
42 (3 5 _
Cia = ( 1) det(_o 1 :|)+3
143 (3 21\ _
013 = ( 1) det(_o 1:|>+3
021 = (*1)2+1 det < 1 4_:1 :|) =+4b
242 (2 4 _
022 = ( 1) det<_0 -1 :|)— 2
__\243 [2 1 _
023 = ( 1) det(_O 1:|>— 2
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)3+l 14\ _
031 = ( 1) det(_Q 5_)— 3
32 2 4] _
032 = ( 1) det(_?) 5->—+2
(1343 (2 1) _
Css = (-1 det<_3 2_)1
So the cofactor matrix is
-7 3 3
C=1|5 -2 =2
-3 2 1
Its transpose is
-7 5 -3
c'=|3 -2 2
3 -2 1

Also
det (A) = a11C11 + a12C12 + a3Ci3 = (2) (=71 + (1) B)+(4) ) =-14+3+12=1

According to the theorem

1 -7 5 -3
A7l = ch=-|3 -2 2
det (A) 3 92 1
and sure enought
2 1 4 -7 5 =3 1 0 0
3 2 5 3 -2 2 =10 10
01 -1 3 -2 1 0 0 1

5. Application: Calculating the Area of a Parallelogram

DEFINITION 12.21. Let A be a 2 X 2 matrix.

>
I
—
o

SR
||

The determinant of A is the number
det (A) = ad — be

Now consider the parallelogram formed from two vectors u, v € R?.

The area of this parallelogram is evidently the sum of the areas the two isometric triangles obtained by
bisecting the parallelogram along the line from the tip of u to the tip of v. Now the height of a triangle
formed from u and v will be given by |lul| sin (6).
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- lul| sin(o)

The area of this triangle is given by a formula from high school geometry:

area of a triangle = %(length of base) x (height of triangle)

1 .
3 [IvIlialfsin (6)
Hence, the area for the parallelogram will be

area of parallelogram = 2 times area of Ay

1 ,
25 vl llullsin (9)
[Vl [[u]] sin (6)

= [villal /1 = cos? (6)

If we square both sides we have

area® = |[v|]*|lul]® (1 - cos? (8))

= [vIP lulf? (1 - (%D

[uf* = (u-v)?
(v-v)(u-u)—(u-v)2
= (U% + U:%) (Uf + U%) — (w1 + u2U2)2

2,2 2,2 2,2 2.2 2,2 2,2
= vju] +vius + v5ul + v5uy; — viU] — 2U101UV2 — VU5

2,2 4 .22
VU5 + VU] — 2U1 V1 U202
_ 2
= (u1v2 — ugv1)

So
area = |ujvy — ugvy|

Now let A be the 2 x 2 matrix formed by interpreting u, v € R? as its columns:
A — [ Uy U1 }
U2 V2

|det (A)] = |uyve — usvy| = area of parallelogram formed from u and v

Evidently,

6. Calculating the Volume of a Parallelopiped

DEFINITION 12.22. Let A be a 3 x 3 matrix.
a1l al2 a3
A= axn axn a
a3l Q32 433



6. CALCULATING THE VOLUME OF A PARALLELOPIPED 8

The determinant of A is the number
det (A) = a11a22a33 + a12a23a31 + a13021032

—@13022031 — 012021033 — 411023032

A parallelopiped is the 3-dimensional analog a 2-dimensional parallelogram; these are constructed by
regarding three 3-dimensional vectors and their translates as the edges of a solid body, and the parallelograms
formed from pairs of these vectors as the sides. We shall not work out the geometry of this example but
simply state the following fact:

Fact 12.23. Let Py p,c be the parallelopiped associated with three vectors a, b, c € R3, and let A be the 3 x 3
matrix formed by regarding the vectors a,b, and c as its column vectors. Then

volume of Py p . = |det (A)]



