## LECTURE 16

## Orthogonality

One of the most useful properties of the standard basis  $[\mathbf{e}_1,\ldots,\mathbf{e}_n]$  of  $\mathbb{R}^n$  is the fact that

(1) 
$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij} \equiv \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

This property for example allows us to easily determine the component of a vector  $\mathbf{v}$  along the  $i^{th}$  basis vector  $\mathbf{e}_i$  be simply computing its inner product with  $\mathbf{e}_i$ :

$$\mathbf{v} = v_1 \mathbf{e}_1 + \dots + v_n \mathbf{e}_n$$

$$\implies \mathbf{e}_i \cdot \mathbf{v} = \mathbf{e}_i \cdot (v_1 \mathbf{e}_1 + \dots + v_n \mathbf{e}_n)$$

$$= v_1 \mathbf{e}_i \cdot \mathbf{e}_1 + v_2 \mathbf{e}_i \cdot \mathbf{e}_2 + \dots + v_i \mathbf{e}_i \cdot \mathbf{e}_i + \dots + v_n \mathbf{e}_i \cdot \mathbf{e}_n$$

$$= 0 + 0 + \dots + 0 + v_i + 0 + \dots + 0$$

$$= v_i$$

Of course, this is clear already once we write  $\mathbf{v}$  and  $\mathbf{e}_i$  in component form

$$\mathbf{v} = [v_1, v_2, \dots, v_i, \dots, v_n] \\
\mathbf{e}_i = [0, \dots, 0, 1, 0, \dots, 0]$$

$$\Longrightarrow \mathbf{e}_i \cdot \mathbf{v} = v_i$$

However, it is not true for a more general basis. Recall that for a general basis  $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ , in order to find the constants  $c_1, \dots, c_n$  such that

$$\mathbf{v} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

you have to solve the linear system

$$\left[\begin{array}{ccc} | & & | \\ \mathbf{b}_1 & \cdots & \mathbf{b}_n \\ | & & | \end{array}\right] \left[\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array}\right] = \left[\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array}\right]$$

which is a much harder task.

On the other hand, we have lots and lots of choices of bases for  $\mathbb{R}^n$  or for any subspace W of  $\mathbb{R}^n$  What we shall be developing in this lecture is a way to contruct bases  $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$  that enjoy orthogonality properties just like (1)

$$\mathbf{b}_i \cdot \mathbf{b}_j = \delta_{ij} \equiv \left\{ \begin{array}{ll} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{array} \right.$$

For such orthonormal bases, we will be able to rapidly determine the coefficients  $c_i$  such that

$$\mathbf{v} = \mathbf{v} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

by simply computing inner products

$$c_i = \mathbf{b}_i \cdot \mathbf{v}$$

## 1. Projections onto Vectors

Recall that the inner product  $\mathbf{a} \cdot \mathbf{b}$  of two vectors in  $\mathbb{R}^n$  has a very concrete geometric interpretation

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta_{\mathbf{a}\mathbf{b}}$$

where

 $\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}} \equiv \text{the length of } \mathbf{a}$ 

 $\|\mathbf{b}\| = \sqrt{\mathbf{b} \cdot \mathbf{b}} \equiv \text{the length of } \mathbf{b}$ 

 $\theta_{ab}$  = the angle between a and b in the plane spanned by a and b

Let's look more closely at the actual geometric situation in the 2-dimensional plane spanned by a and b.



We see from the diagram above that

$$\|\mathbf{a}\|\cos(\theta_{\mathbf{a}\mathbf{b}})$$

is the component of the vector **a** that runs in the direction of **b**. We call this the orthogonal projection of **a** on **b**, because if we had a flashlight oriented perpendicularly to the vector **b**, the "shadow "of the vector **a** along **b** would be precisely the segment shown above. Since

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta_{\mathbf{a}\mathbf{b}}$$

we can have the following formula

the length of the projection of 
$$\mathbf{a}$$
 along the direction of  $\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$ 

In what follows, however, it is useful to think of this projection not as a length but as the vector that runs in the same direction as  $\mathbf{b}$  with length  $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$ . Now the unit vector in the direction of  $\mathbf{b}$  is

$$\frac{\mathbf{b}}{\|\mathbf{b}\|}$$

so if we multiply this unit vector by the length  $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$ , we get the vector we want, namely

$$\frac{a \cdot b}{\|b\|} \frac{b}{\|b\|} = \frac{a \cdot b}{b \cdot b} b$$

DEFINITION 16.1. Let **a** and **b** be two vectors in  $\mathbb{R}^n$ . Then the projection of **a** along the direction of **b** is the vector

$$\mathbf{P_{a,b}} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}$$

## 2. Projections onto Subspaces

Let me now pose a problem that generalizes the construct presented in the last section.

PROBLEM 16.1. Given a vector  $\mathbf{v} \in \mathbb{R}^n$  and a subspace W of  $\mathbb{R}^n$ . What component of  $\mathbf{v}$  lies along the directions in W?

We will in fact show that there are unique vectors  $\mathbf{v}_{\perp}$  and  $\mathbf{v}_{W}$  such that

- $\mathbf{v}_W \in W$
- $\mathbf{v}_{\perp}$  is perpendicular to every vector in W
- $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_\perp$

We will call  $\mathbf{v}_W$  the **orthogonal projection** of  $\mathbf{v}$  **onto** W. It will be exactly the component of  $\mathbf{v}$  that lies in the subspace W.

Let us now suppose that W is in fact a k-dimensional subspace with basis  $B_W = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ . The first thing we shall do is construct a subspace  $W^{\perp}$  of  $\mathbb{R}^n$  that is perpendicular to every vector in W. That is to say, a subspace  $W^{\perp} \subset \mathbb{R}^n$  such that

(2) 
$$\mathbf{v} \in W^{\perp} \implies \mathbf{v} \cdot \mathbf{w} = 0$$
 for every vector  $\mathbf{w} \in W$ 

Since every vector in W can be written

$$\mathbf{w} = w_1 \mathbf{b}_1 + w_2 \mathbf{b}_2 + \dots + w_k \mathbf{b}_k$$

an easy way to impose the condition  $\mathbf{v} \cdot \mathbf{w} = 0$  for all vectors  $\mathbf{w} \in W$ , would be to demand

$$\mathbf{v} \cdot \mathbf{b}_i = 0$$
 for  $i = 1, \dots, k$ 

These k conditions on  $\mathbf{v}$  can then be expressed as a matrix equation

$$\begin{bmatrix} \mathbf{b}_1 \cdot \mathbf{v} \\ \vdots \\ \mathbf{b}_k \cdot \mathbf{v} \end{bmatrix} = \begin{bmatrix} \longleftarrow & \mathbf{b}_1 & \longrightarrow \\ & \vdots & \\ \longleftarrow & \mathbf{b}_k & \longrightarrow \end{bmatrix} \mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

In other words, the vector  $\mathbf{v}$  will have to lie in the null space of the  $k \times n$  matrix formed by using the (n-dimensional) basis vectors  $\mathbf{b}_i$  as rows. Set

$$W^{\perp} \equiv NullSp \left( \begin{bmatrix} \longleftarrow & \mathbf{b}_1 & \longrightarrow \\ & \vdots & \\ \longleftarrow & \mathbf{b}_k & \longrightarrow \end{bmatrix} \right)$$

Then, we have set things up so that

$$\mathbf{v} \in W^{\perp} \iff \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in W$$

The space  $W^{\perp}$  is called the **orthogonal complement to** W in  $\mathbb{R}^n$ 

Next, note that since the vectors  $\mathbf{b}_1, \dots, \mathbf{b}_k$  form a basis, they must be linearly independent. Therefore the matrix

(3) 
$$\mathbf{A}_{W,B} = \begin{bmatrix} \longleftarrow & \mathbf{b}_1 & \longrightarrow \\ & \vdots & \\ \longleftarrow & \mathbf{b}_k & \longrightarrow \end{bmatrix}$$

has k linearly independent row vectors and so has rank k. But then since

$$n = \# \text{ columns } = rank(\mathbf{A}_{W,B}) + \dim(NullSp(\mathbf{A}_{W,B}))$$

we have

$$\dim W^{\perp} = n - k$$

So we can find a basis  $B_{W^{\perp}} = \{\mathbf{v}_1, \dots, \mathbf{v}_{n-k}\}$  for  $W^{\perp}$ . Let's write this change notation slightly are write  $\{\mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$  for the n-k basis vector  $\{\mathbf{v}_1, \dots, \mathbf{v}_{n-k}\}$ .

LEMMA 16.2. The set  $\{\mathbf{b}_1, \dots, \mathbf{b}_k, \mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$  where  $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$  is our given basis for W and  $\{\mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$  is a basis for the null space of  $\mathbf{A}_{W,B}$ , is a basis for  $\mathbb{R}^n$ .

Proof. Suppose

$$c_1\mathbf{b}_1 + \dots + c_k\mathbf{b}_k + c_{k+1}\mathbf{b}_{k+1} + \dots + c_n\mathbf{b}_n = \mathbf{0}$$

with not all coefficients  $c_i = 0$ . Then we'd have

$$c_1\mathbf{b}_1 + \dots + c_k\mathbf{b}_k = -c_{k+1}\mathbf{b}_{k+1} - \dots - c_n\mathbf{b}_n$$

Set

$$\mathbf{v}_1 = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k \in W$$
  
$$\mathbf{v}_2 = c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n \in W^{\perp}$$

so that (4) becomes

$$\mathbf{v}_1 = -\mathbf{v}_2$$

Since the basis vectors set  $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$  and  $\{\mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$  are linearly independent, neither  $\mathbf{v}_1$  nor  $\mathbf{v}_2$  can be  $\mathbf{0}$  unless all the coefficients  $c_1, \dots, c_n$  are zero, which is a situation that we have excluded from the start. But then if  $\mathbf{v}_1 \neq 0$ 

$$0 \neq \|\mathbf{v}_1\|^2 = \mathbf{v}_1 \cdot \mathbf{v}_1$$

$$= \mathbf{v}_1 \cdot (-\mathbf{v}_2) \quad \text{by (5)}$$

$$= -(c_1\mathbf{b}_1 + \dots + c_k\mathbf{b}_k) \cdot c_{k+1}\mathbf{b}_{k+1} - \dots - c_n\mathbf{b}_n$$

$$= -\sum_{i=1}^k \sum_{j=\bar{k}1}^n c_i c_j \mathbf{b}_i \cdot \mathbf{b}_j$$

$$= -\sum_{i=1}^k \sum_{j=\bar{k}1}^n c_i c_j (0)$$

$$= 0 \quad \text{(contradiction!)}$$

The fifth step here (setting each  $\mathbf{b}_i \cdot \mathbf{b}_j$  equal to zero) is justified by the fact that we have set things up precisely so that each vector in W is particular to every vector in  $W^{\perp}$ . We conclude that the only way we can have

$$c_1\mathbf{b}_1 + \dots + c_k\mathbf{b}_k + c_{k+1}\mathbf{b}_{k+1} + \dots + c_n\mathbf{b}_n = \mathbf{0}$$

is to have each of the coefficients  $c_1, \ldots, c_n$  equal to zero. Hence, the vectors  $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$  are linearly independent. But any set of *n*-linearly independent vectors in  $\mathbb{R}^n$  will constitute a basis for  $\mathbb{R}^n$ . The lemma now follows.

Theorem 16.3. Let W be a subspace of  $\mathbb{R}^n$ . Then every vector  $\mathbf{v}$  in  $\mathbb{R}^n$  has a unique decomposition

$$\mathbf{v} = \mathbf{v}_W + \mathbf{v}_{W^\perp}$$

with  $\mathbf{v}_W \in W$  and  $\mathbf{v}_{W^{\perp}} \in W^{\perp}$ .

Sketch of Proof. We again fix a basis  $B_W = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$  of W and a basis  $B_{W^{\perp}} = \{\mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$  for  $W^{\perp}$  where

$$W^{\perp} = NullSp \left( \begin{bmatrix} \longleftarrow & \mathbf{b}_1 & \longrightarrow \\ & \vdots & \\ \longleftarrow & \mathbf{b}_k & \longrightarrow \end{bmatrix} \right)$$

The preceding lemma tells us that  $B_W \cup B_{W^{\perp}}$  is a basis for  $\mathbb{R}^n$ . Thus, every vector  $\mathbf{v} \in \mathbb{R}^n$  has a unique expression as

$$\mathbf{v} = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k + c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n$$
  
=  $(c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k) + (c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n)$   
=  $\mathbf{v}_W + \mathbf{v}_{W^{\perp}}$ 

where

$$\mathbf{v}_W = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k \in W$$

$$\mathbf{v}_{W^{\perp}} = c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n \in W^{\perp}$$

- **2.1.** Algorithm for Determining  $\mathbf{v}_W$  and  $\mathbf{v}_{W^{\perp}}$ . We now summarize the algorithm used to in the Lemma and Theorem to obtain the splitting  $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_{W^{\perp}}$ .
  - Find a basis  $B_W = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$  for W
  - Find a basis  $B_{W^{\perp}} = \{\mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$  for  $W^{\perp} = NullSp(\mathbf{A}_{W,B})$  (cf. (3)).
  - Find the coordinate vector of  $\mathbf{v}$  with respect to the basis  $B = \{\mathbf{b}_1, \dots, \mathbf{b}_k, \mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$  of  $\mathbb{R}^n$  using the row reduction

• Set

$$\mathbf{v}_W = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k$$

$$\mathbf{v}_{W^{\perp}} = c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n$$

where  $c_i$ , is the  $i^{th}$  component of the coordinate vector  $\mathbf{v}_B$ .

Example 16.4. Let  $W = span([1,0,1],[0,1,1]]) \subset \mathbb{R}^3$ . Decompose the vector  $\mathbf{v} = [1,4,-4]$  into its components  $\mathbf{v}_W \in W$  and  $\mathbf{v}_{W^{\perp e}} \in W^{\perp}$ .

• The two vectors  $\mathbf{b}_1 \equiv [1,0,1]$  and  $\mathbf{b}_2 = [0,1,1]$  are obviously linearly independent and so  $B_W = \{\mathbf{b}_1, \mathbf{b}_2\}$  is already a basis for W. To get a basis for  $W^{\perp}$ , we compute the null space of

$$\mathbf{A}_{W,B} = \left[ \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

This matrix is already in reduced row echelon form and so its null space will be the solution set of

$$\begin{vmatrix} x_1 + x_3 = 0 \\ x_2 + x_3 = 0 \end{vmatrix} \implies \mathbf{x} = x_3 \begin{vmatrix} -1 \\ -1 \\ 1 \end{vmatrix} \implies B_{W^{\perp}} = \{ [-1, -1, 1] \} \equiv \{ \mathbf{b}_3 \}$$

We now compute the coordinate vector of  $\mathbf{v} = [1, 2, 1]$  with respect to  $B = \{[1, 0, 1], [0, 1, 1], [-1, -1, 1]\}$ 

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 4 \\ 1 & 1 & 1 & -4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$

So  $\mathbf{v}_B = [-2, 1, -3]$ . But now

$$\mathbf{v} = (-2)\,\mathbf{b}_1 + (1)\,\mathbf{b}_2 + (-3)\,\mathbf{b}_3$$

and so

$$\mathbf{v}_W = (-2)\mathbf{b}_1 + (1)\mathbf{b}_2 = [-2, 1, -1]$$
  
 $\mathbf{v}_{W^{\perp}} = (-3)\mathbf{b}_3 = [3, 3, -3]$ 

Example 16.5. Find the projection of the vector  $\mathbf{v} = [1, 2, 1]$  on the solution set of  $x_1 + x_2 + x_3 = 0$ .

• Let

$$W = \{ [x_1, x_2, x_3] \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0 \}$$

This is obviously spanned by vectors of the form

$$\mathbf{x} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

and so  $\{[-1,1,0],[-1,0,1]\}$  is a basis for W.  $W^{\perp}$  will then be

$$NullSp\left(\left[\begin{array}{ccc} -1 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right]\right) = NullSp\left(\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -1 \end{array}\right]\right) = span\left([1,1,1]\right)$$

So we need to find the first to component of the coordinate vector of  $\mathbf{v}$  with respect to the basis  $\{[-1,1,0],[-1,0,1],[1,1,1,1]\}$  of  $\mathbb{R}^3$ .

$$\begin{bmatrix} -1 & -1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{2}{3} \\ 0 & 1 & 0 & -\frac{1}{3} \\ 0 & 0 & 1 & \frac{4}{3} \end{bmatrix}$$

So

$$\mathbf{v}_W = \frac{2}{3} [-1, 1, 0] - \frac{1}{3} [-1, 0, 1] = \left[ -\frac{1}{3}, \frac{2}{3}, \frac{-1}{3} \right]$$