LECTURE 16

Orthogonality
One of the most useful properties of the standard basis [eq,...,e,] of R™ is the fact that
_ 1 ifi=y
(1) 61'63—5132{0 i
This property for example allows us to easily determine the component of a vector v along the i*" basis
vector e; be simply computing its inner product with e;:
v = wve;+---+tu,e,
- ei'V:ei'(Ulel+"'+vnen)
V1€; - €1 T V2€; - €y + -+ Vi€ - €+ -+ Un€; - ey
= 04+0+-+0+v;+0+---+0
;i
Of course, this is clear already once we write v and e; in component form
V:[Ul,vg,...,’ui,...,l}n] N — oy,
e;=10,...,0,1,0,...,0] } — &V=u
However, it is not true for a more general basis. Recall that for a general basis B = {by,...,b,}, in order

to find the constants cy, ..., ¢, such that
V= Clbl +---+ C'nb'n

you have to solve the linear system

which is a much harder task.

On the other hand, we have lots and lots of choices of bases for R™ or for any subspace W of R™ What
we shall be developing in this lecture is a way to contruct bases B = {bq,...,b,} that enjoy orthogonality
properties just like (1)

bty g = { 4 10
For such orthonormal bases, we will be able to rapidly determine the coefficients ¢; such that
v=v=cb;+ - +c,b,
by simply computing inner products
ci=b;i-v
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1. Projections onto Vectors

Recall that the inner product a - b of two vectors in R™ has a very concrete geometric interpretation

a-b = ||a]| ||b|| cosOan

where
la| = +/a-a=thelength of a
|b|| = +Vb-b = the length of b
fan = the angle between a and b in the plane spanned by a and b

Let’s look more closely at the actual geometric situation in the 2-dimensional plane spanned by a and b.

We see from the diagram above that

[l cos (fan)

is the component of the vector a that runs in the direction of b. We call this the orthogonal projection of
a on b, because if we had a flashlight oriented perpendicularly to the vector b, the “shadow ”of the vector
a along b would be precisely the segment shown above. Since

a-b =|a| ||b|l cosban
we can have the following formula
a-b
b

In what follows, however, it is useful to think of this projection not as a length but as the vector that runs
in the same direction as b with length ﬁ. Now the unit vector in the direction of b is

b

b
so if we multiply this unit vector by the length ﬁ‘;b}ﬂ, we get the vector we want, namely
abb _ab
bl bl ~ b-b

DEFINITION 16.1. Let a and b be two vectors in R™. Then the projection of a along the direction of b is
the vector

the length of the projection of a along the direction of b =

a-b
P.p = —Db
*~ bbb
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2. Projections onto Subspaces

Let me now pose a problem that generalizes the construct presented in the last section.

PROBLEM 16.1. Given a vector v € R™ and a subspace W of R™. What component of v lies along the
directions in W ?

We will in fact show that there are unique vectors v, and vy such that

e viy €W
e v is perpendicular to every vector in W
e V=V +V]

We will call vy the orthogonal projection of v onto W. It will be exactly the component of v that lies
in the subspace W.

Let us now suppose that W is in fact a k-dimensional subspace with basis By = {b1,...,bx}. The first
thing we shall do is construct a subspace W+ of R" that is perpendicular to every vector in W. That is to
say, a subspace W+ C R” such that

(2) vewt = v-w=0 for every vector w € W
Since every vector in W can be written
w = wiby +wabs + -+ + wiby
an easy way to impose the condition v - w = 0 for all vectors w € W, would be to demand
v-b;, =0 fori=1,...,k
These k conditions on v can then be expressed as a matrix equation
by v — by — 0
| = : v=|o0
by - v — by — 0

In other words, the vector v will have to lie in the null space of the £ x n matrix formed by using the
(n-dimensional) basis vectors b; as rows. Set

— b —
W+ = NullSp :
— b —
Then, we have set things up so that
veWt — v.-w=0 foralweW
The space W+ is called the orthogonal complement to W in R”

Next, note that since the vectors by, ..., by form a basis, they must be linearly independent. Therefore the
matrix

— b —
3) Aw.p = -
— b, —
has k linearly independent row vectors and so has rank k. But then since
n = # columns = rank (Aw,g) + dim (NullSp (Aw,B))

we have
dmWt=n—k
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So we can find a basis By. = {v1,...,v,_x} for W, Let’s write this change notation slightly are write
{bk+1,...,by} for the n — k basis vector {vy,...,v,_r}

LEMMA 16.2. The set {by,...,bg,bgt1,...,bn} where {by,...,bg} is our given basis for W and {bg41,...,bn}
is a basis for the null space of Aw g, is a basis for R™.

Proof. Suppose
c1by + -+ cbg + ckp1bryr + - + by, =0

with not all coefficients ¢; = 0. Then we’d have

(4) ciby + -+ b = —cpp1bryr — - — by
Set

vi = cibi+---+cebpeW

vy = Cpy1bgr1+---+ by € Wt

so that (4) becomes

(5) Vi = —Vy
Since the basis vectors set {b1,...,bg} and {byi1,...,b,} are linearly independent, neither v; nor vy can
be 0 unless all the coefficients ¢ ..., ¢, are zero, which is a situation that we have excluded from the start.

But then if vi #£0

0 # [vilP=vi-vs

= vi-(-va) by (5)
- - (Clbl +---+ Ckbk') . Ck+1bk+1 — = Cnbn
k n
S ) LTI
=1 j=k1
k n
S I IECIC
i=1 j=k1
= 0 (contradiction!)

The fifth step here (setting each b; - b; equal to zero) is justified by the fact that we have set things up
precisely so that each vector in W is particular to every vector in W+. We conclude that the only way we
can have

ciby + -+ by + cppabryr + -+ by, =0

is to have each of the coefficients cy,...,c, equal to zero. Hence, the vectors {by,...,b,} are linearly
independent. But any set of n-linearly independent vectors in R™ will constitute a basis for R". The lemma
now follows.

THEOREM 16.3. Let W be a subspace of R™. Then every vector v in R™ has a unique decomposition
V=V + VL

with viy € W and vyyr € W,

Sketch of Proof. We again fix a basis By = {bq,...,b;} of W and a basis By» = {bkt1,...,b,} for w+
where
— b1 —
Wt = NullSp

— by —
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The preceding lemma tells us that By U Byy1 is a basis for R™. Thus, every vector v € R™ has a unique
expression as

v = abi+ -+ ebr + cepibryr + -+ enby
= (aby +---+epbg) + (cky1brrr + -+ cnby)
= Vw + VL
where
vy = cabi+---4+cby € W
VL = Cg+1bg+1+ -+ cyb, € Wt

2.1. Algorithm for Determining vy and vy.. We now summarize the algorithm used to in the
Lemma and Theorem to obtain the splitting v = vy + vy..

Find a basis By = {by,..., by} for W

Find a basis By . = {bgi1,...,bn} for Wt = NullSp (Aw.5) (cf. (3)).

Find the coordinate vector of v with respect to the basis B = {by,...,bg,bgi1,...,b,} of R"
using the row reduction

| N 1 - o]l |
b; -+ b,|v — o vy | =0 vE]
| ] 0 1] |
e Set
vy = c1by+ -+ cbg
VgL = Cpyibgyr + -+ cepby

where ¢;, is the i*" component of the coordinate vector vp.

EXAMPLE 16.4. Let W = span ([1,0,1],[0,1,1]]) € R3. Decompose the vector v = [1,4,—4] into its
components viy € W and vy € W+,

e The two vectors by = [1,0,1] and bs = [0,1,1] are obviously linearly independent and so By =
{by, by} is already a basis for W. To get a basis for W+, we compute the null space of

101
AWvB:{o 1 1]

This matrix is already in reduced row echelon form and so its null space will be the solution set of

-1
21228 } —  x=u3 —11 — By ={[-1,-1,1]} = {bs}

We now compute the coordinate vector of v = [1, 2, 1] with respect to B = {[1,0,1],[0,1,1],[-1,-1,1]}

1 0 —-1] 1 1 0 0|-2

01 —-1( 4 — 01 0] 1

11 1|4 00 1]|-3
So vp =[-2,1,—3]. But now

v=(=2)by1+ (1)b2 +(-3)bs
and so
vivw = (=2)bi1+(1)by =[-2,1,-1]

vigr = (=3)bs=[3,3,-3]
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ExXAMPLE 16.5. Find the projection of the vector v = [1,2, 1] on the solution set of x1 + 2 + z3 = 0.

o Let
W = {[z1,22,23] € R® |2y 4 2o + 23 = 0}
This is obviously spanned by vectors of the form
-1 -1
X = I9 1 + x3 0
0 1

and so {[~1,1,0],[~1,0,1]} is a basis for W. W+ will then be

Nuzzqu o D Nuzzqu cl D — span ([1,1,1])

So we need to find the first to component of the coordinate vector of v with respect to the basis
{[-1,1,0],[-1,0,1],[1,1,1,]} of R3.

-1 -1 1|1 10 0f 2
1 0 1|2 — 01 0|-%
0 1 1|1 00 1| 3

So

vy = - [-1,1,0] — % [-1,0,1] = [_

wl o
W=
wl N
col !

—_
| I



