
LECTURE 17

The Gram-Schmidt Algorithm

In the last lecture I showed how one could break a vector v up into two orthogonal components; with one
component lying in a given subspace W and another component lying in the subspace W⊥ that is orthogonal
to W . The procedure was to

• choose a basis BW = {b1, . . . ,bk} for W
• find a basis BW⊥ = {bk+1, . . . ,bn} for W⊥

• combine BW with BW⊥ to form a basis B = {b1, . . . ,bn} for Rn

• find the coordinate vector vB of v with respect to B and then throw away the components along
the vectors {bk+1, . . . ,bn}

Today we develop a more systematic approach that

Theorem 17.1. Let {v1, . . . ,vk} be a set of mutually orthogonal non-zero vectors. Then the vectors
v1, . . . ,vk are linearly independent.

Proof.

Suppose

(1) c1v1 + · · ·+ ckvk = 0

Then for each i = 1, . . . , k we have

0 = 0 · vi = c1vi · v1 + c2vi · v2 + · · ·+ civi · vi + · · ·+ ckvi · vk = ci ‖vi‖2 =⇒ ci = 0

So we cannot satisfy (1) without each ci = 0. Hence the vectors v1, . . . ,vk are linearly independent.

Corollary 17.2. Any set of n mutually orthogonal non-zero vectors will be a basis for Rn.

Now suppose B = {b1,b2, . . . ,bk} is a basis for some subspace W of Rn. From this basis we can system-
atically construct an orthogonal basis for W ; that is a basis for which all the vectors are orthogonal.

Before we get started, let’s recall that given any vectors a and v we have a decomposition of v

(2) v = va + va⊥

where va is the component of v along the direction of a and va⊥ is the component of v along a direction
perpendicular to v. Moreover, we have the following formula for va

(3) va =
a · v
a · a

a

Combining (2) and (3) we have a formula for va⊥ as well

va⊥ = v − a · v
a · a

a
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Remark 17.3. Note that if a and v are linearly independent then va⊥ 6= 0 : because it is a linear
combination of two linearly independent vectors with at least one coefficient, the coefficient of v, non-zero.
Note also that from (3)

a · va⊥ = a · v +
a · v
a · a

a · a = 0

as expected.

Okay, here’s how we generate an orthogonal basis. Set

o1 = b1

and then

o2 = b2 −
o1 · b2

o1 · o1
o1

By construction, o1 and o2 are perpendicular, non-zero and linearly independent. Now let

o3 = b3 −
o1 · b3

o1 · o1
o1 −

o2 · b2

o2 · o2
o2

The vector o3 is non-zero because it is a linear combination of the basis vectors b1, b2 and b3 with at least
one non-zero coefficient. Moreover

o1 · o3 = o1 · b3 −
o1 · b3

o1 · o1
o1 · o1 −

o2 · b2

o2 · o2
o1 · o2 = o1 · b3 − o1 · b3 = 0

o2 · o3 = o2 · b3 −
o1 · b3

o1 · o1
o2 · o1 −

o2 · b2

o2 · o2
o2 · o2 = o2 · b3 − o2 · b3 = 0

and so {o1,o2,o3} are mutually perpendicular non-zero vectors, and so linearly independent.

We can continue in this fashion to construct more and more linearly independent orthogonal vectors. For
example,

o4 = b4 −
o1 · b4

o1 · o1
o1 −

o2 · b4

o2 · o2
o2 −

o3 · b4

o3 · o3
o3

In the end, when we reach bk this process terminates with

ok = bk −
o1 · bk

o1 · o1
o1 −

o2 · bk

o2 · o2
o2 − · · · −

ok−1 · bk

ok−1 · ok−1
ok−1

and we arrive at a set of k linearly independent, mutually orthogonal vectors {o1,o2, . . . ,ok}

The basis {o1, · · · ,ok} obtained by the above algorithm, however, is not an orthonormal basis. That is
to say, although mutually orthogonal by construction, the vectors oi do not necessarily have the length 1.
In fact, it’s rather unlikely that ‖oi‖ = 1. But there is an easy fix for this. All we have to do is divide each
of the orthogonal basis vectors oi by their lengths ‖oi‖ =

√
oi · oi to get a set of k, mutually orthogonal,

linearly independent vectors, all of length 1 :

o1 −→ n1 =
1

√
o1 · o1

o1

o2 −→ n2 =
1

√
o2 · o2

o2

...

ok −→ nk =
1

√
ok · ok

ok

Example 17.4. Find a orthonormal basis for the subspace

W = span ([1,−1, 1, 0, 0] , [−1, 0, 0, 0, 1] , [0, 0, 1, 0, 1])

of R5.
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• First we need a basis for W . 1 −1 1 0 0
−1 0 0 0 1
0 0 1 0 1

 −→
 1 −1 1 0 0

0 −1 1 0 1
0 0 1 0 1


This last matrix is in row echelon form with no non-zero rows. From this short calculation we see
that the original three vectors are linearly independent and so will constitute a basis for W . We
can thus use B = {b1,b2,b3} with

b1 = [1,−1, 1, 0, 0]

b2 = [−1, 0, 0, 0, 1]

b3 = [0, 0, 1, 0, 1]

as an initial basis to start the Gram-Schmidt orthogonalization process.
Thus, we set

o1 = b1 = [1,−1, 1, 0, 0]

=⇒ ‖o1‖2 = 3

=⇒ n1 =

[
1√
3
,− 1√

3
,

1√
3
, 0, 0

]
Next we compute o2,

o2 = b2 −
o1 · b2

o1 · o1
o1

= [−1, 0, 0, 0, 1]− (−1)

3
[1,−1, 1, 0, 0]

=

[
−2

3
,−1

3
,

1

3
, 0, 1

]
We have

‖o2‖2 =
4

9
+

1

9
+

1

9
+ 1 =

5

3

=⇒ n2 =

√
3

5

[
−2

3
,−1

3
,

1

3
, 0, 1

]
Finally,

o3 = b3 −
o1 · b3

o1 · o1
o1 −

o2 · b2

o2 · o2
o2

= [0, 0, 1, 0, 1]− (1)

(3)
[[1,−1, 1, 0, 0]]− (1)

(2)
[−1, 0, 0, 0, 1]

=

[
1

6
,

1

3
,

2

3
, 0,

1

2

]
and

‖o3‖2 =
1

36
+

1

9
+

4

9
+

1

4
=

5

6
so

n3 =

√
6

5

[
1

6
,

1

3
,

2

3
, 0,

1

2

]
Thus,

B′ =

{[
1√
3
,− 1√

3
,

1√
3
, 0, 0

]
.

√
3

5

[
−2

3
,−1

3
,

1

3
, 0, 1

]
,

√
6

5

[
1

6
,

1

3
,

2

3
, 0,

1

2

]}
will be an orthonormal basis for W .


