LECTURE 18

Abstract Vector Spaces and Concrete Examples

Our discussion of linear algebra so far has been devoted to discussing the relations between systems of linear
equations, matrices, and vectors. As such, topics like the notions of subspaces, bases, linear independence,
etc. tend to come off as a bunch of formal nonsense. To see the real utility of these ideas, it’s actually
helpful to first abstract things further; this will allow us to bring more interesting examples into the picture.

DEFINITION 18.1. A wector space over R is a set V' for which the following operations are defined

e scalar multiplication: for every r € R and v € V we have a map (r,v) > r-v e V.
e vector addition: for every pair of vectors u,v € V we have a map (u,v) >u+vev
and satisfy the following properties
) (u+v)+w=u+(v+w) (associativity of vector addition)
) u+ v =v+u (commutativity of vector addition)
) There exists an element 0 € V such that v+ 0 = v for all v € V. (additive identity.)
4) For each v € V there exists an element —v € V' such that v + (—v) = 0. (additive inverses)
) r(u+v)=ru+rv (scalar multiplication is distributive with respect to vector addition,).
) (r+s)v =rv+sv. (scalar multiplication is distributive with respect to addition of scalars)
) r(sv) = (rs)v (scalar multiplication preserves associativity of multiplication in R.)
) (1)v = v (preservation of scale).

DEFINITION 18.2. A subspace W of a vector space V' is a subset of V' that is closed under scalar multipli-
cation and vector addition. Equivalently, a subspace of a vector space V' is a subset W of V' that is also a
vector space (using the scalar multiplication and vector addition it inherits from V).

EXAMPLE 18.3. V = {m x n matrices}
ExXAMPLE 18.4. V = {polynomials of degree n}
This is an important example, not just for its applications, but also because it illustrates how this notion

of an abstract vector can be used to connect a disparent part of mathematics with linear algebra. We’ll
work this example out in detail.

Let P be the set of polynomials in one variable = of degree < n. We define scalar multiplication in P by
ifp=a,z" 4+ ---aqx+ag € P and AeR , then Ap=Aa,z"+ -+ aix+ dag € P
We define vector addition in P by
if p = au"+-axz+ay and p =a 2"+ --djx+a;
then p+p = (ap+a))z"+- -+ (a1 +a}))x+ao+ay€P

It is easily verified that P endowed with this scalar multiplication and this vector addition satisfies all eight
of the axioms above. So P is a vector space.

The set P, consisting of polynomials of degree < n is a subspace of P.
ExAMPLE 18.5. V = {functions on the real line}
EXAMPLE 18.6. V = {functions from a set S to the set of real numbers}
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EXAMPLE 18.7. V = {formal power series in one variable}

ExaMPLE 18.8. Let P be the vector space of polynomials in one variable z. Determine whether or not the
given set of vectors is linearly dependent or independent.

(1) {1,4x+3,3m—4,x2+2,x—x2}

Recall that a set {v1,..., vy} of vectors in R™ is linearly independent if and only if the only solution of
(2) c1V1 +Covy + - -+ CpVE = 0

isc; =cg =+ =¢; =0. The notion of linear independence in P is exactly the same (as soon as we

identify polynomials with abstract vectors). Thus the polynomials

pr = 1

p2 = 4x+3
ps = 3dr—4
pr = z°+2
ps = x—a?

will be linearly independent if and only if
aprteprtespstapstoaps =0 = O=a=c=c=u=c
Now the left hand side of the above equation is

c1+ca(4x43) +e3(3x—4) +ca(2® +2) +c5(x—22) = (cq + ¢5) 2® + (deg + 3z + ¢5) 2+ (1 + 3co — dez + 2¢4)

so if this is to vanish we must have

c1+3co—4e3+2¢4 = 0
4cg +3cs+c5 = 0
cs+cs = 0
Looking at the corresponding augmented matrix
13 -4 2 010
04 3 0 1]0
00 0 1 1]0

and noting that it is already in row-echelon form with no rows corresponding to inconsistent equations, we
can conclude that the corresponding linear system is consistent. But a consistent linear system with more
variables than equations will always have an infinite number of solutions. Hence, there will be non-trivial
solutions of (2), and so the polynomials (1) are not linearly independent.

1. Vector Space Isomorphisms

In short, a vector space over R is a set V upon which notions of scalar multiplication and vector addition
are defined, and such that these operations behave exactly like scalar multiplication and vector addition in
R™. The point of this definition is that it brings to our theoretical and calculational apparatus a much
wider variety of underlying sets. To facilitate this, however, we need two more concepts. The first is the
generalization of linear transformations 7' : R™ — R™ to abstract vector spaces

DEFINITION 18.9. Let V' and W be two vector spaces. A mapping T : V — W is called a (vector space)
homomorphism if it preserves the operations of scalar multiplication and vector addition:

TAvyv) = AwT(v)
T(vitvve) = T(vi)+wT(v2)
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Here, -y denotes the scalar multiplication in V', +y, denotes vector addition in V', etc. If V =R", W =R™
then a vector space homomorphism from V' to W is exactly the same thing as a linear transformation from
R™ to R™.

Recall that a mapping T': V — W is called one-to-one if an inverse mapping 71 : W — V exists (such
that both T"1oT :V =V and ToT~!: W — W are the identify mappings).
DEFINITION 18.10. A wector space homomorphism T : V. — W is called one-to-one if
f@)=fly) = ==y
LEMMA 18.11. A wector space homomorphism T : V. — W is one-to-one if and only if ker(T) = {0}.

Proof.

= Suppose T : V' — W is one-to-one and ker(T") # {0}. Let x be a non-zero element of ker (7'). Then for
any y € V we have

y+x#y

but

Ty+x)=TH)+TE=TF)+0=TI(y)
which contradicts our hypothesis that T' is one-to-one. We conclude that if T' is one-to-one then ker(T) =
{0}
<« Suppose ker (T') = {0} and x,y are such that T (x) =T (y). Then

0=Tx -T{y)=Tkx-y) = x-y=0
since ker(T) = {0}. But then

and so T is onto.
DEFINITION 18.12. A wector space homomorphism T : V. — W is said to be onto if
W = Range(f) ={w e W | w =T(z) for some z € V}

DEFINITION 18.13. A (vector space) isomorphism is a vector space homomorphism that is one-to-one
and onto. If an isomorphism T : V — W exists between two vector spaces, then we say that V and W are
isomorphic.

Now let me explain how this idea of a vector space isomorphism is used in practice.
LEMMA 18.14. If T : V — W s a vector space isomorphism then dim(V) = dim (W) .

THEOREM 18.15. Every n-dimensional (real) vector space is isomorphic to R™.

This theorem is the key to carrying out calculations in an abstract vector space. We have already a wide
range of calculational techniques for handling questions about vectors in R™. The definition of an abstract
vector space tells already that the operations of scalar multiplication and vector addition in a vector space
behave like the corresponding operations in R™. The theorem tells us that in fact we can consistently
convert a calculation in an abstract vector space V to a corresponding calculation in R™, and then convert
the answer back to V.

ExaMpPLE 18.16. Let P> be the vector space of polynomials in one variable of degree < 2. Determine
whether or not the following vectors are a basis for Ps.

(3) {fo14xf1f}
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If (3) is a basis for P, then every vector (i.e. polynomial) in P, has a unique expression as a linear
combination of p; = 1, pp = — 1, and p3 = (z — 1)%. Let
D= ag —|—a1x—|—a2x2
be an arbitrary element of P,. We want to find a unique set of coefficients ¢y, co, c3 such that

p = c1p1 + C2p2 + C3p3

or

ap + a1z + asx® = ¢ + co(x— 1)+ cs3(z — 1)2 =c —catc3+ (2 —2c3)x+ c3?

Comparing the coefficients of like powers of x on both sides we see we must have

cp—Cx+c3 = ap
Coy — 263 = a
C3 = Qa3

The corresponding augmented matrix is

1 -1 1 ao
0 1 -2 ai
0 0 1 as

This matrix is already in row-echelon form, and it is clear that the corresponding linear system is consistent
and has a unique solution. Thus, the polynomials (3) form a basis for P,.

Note: The monomials {1, x, x2} also form a basis for P, and the fact that every polynomial in P, can be
uniquely expressed as either

2
p=ag+ a1T + asx

or
p=c+ca(x—1)+cz(x — 1)

can be understood as an example of Taylor’s theorem (the first expression corresponds to a Taylor expansion
of p about = 0 and the second expression corresponds to the Taylor expansion of p about x = 1.)

ExaMpPLE 18.17. Find a basis for the span of the following polynomials.

{2* 1,2 +1,4,22 — 3}

Recall that a basis for the span of a set {vi,...,vi} of vectors in R™ can be found by identifying the
vectors with the columns of a n x k matrix A, reducing A to a row-echelon form A’, and then selecting the
vectors v; corresponding to columns of A’ with pivots. We can do same thing here if we first translate the
polynomials above to vectors in R?. Thus, we set

-1 = vi=(-10,1)
?+1 = vy=(10,1)
4 — vy = (4,0,0)
2z —3 — vy =(-3,2,0)
(Here we are interpreting the coefficient of #°~! as the i*" component of the corresponding vector.) This
leads us to
-1 1 4 -3
A= [V1|V2|V3‘V4] = 0 0 0 2
1 1 0 O
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This matrix row reduces to

-1 1 4 -3 -1 1 4 =3 -1 1 4 -3
0 0 0 2 R3—>R3—|—R3 0 0 0 2 R2<—>R§ 0 2 4 -3 |=A
1 1 0 O 0 2 4 -3 0 0 0 2

The pivots of A’ occur in the first, second, and fourth columns. Hence, the vectors {vi,va,v4} form a
basis for the span(vy,vavs,v4). And so the polynomials {x2 —1,22+1,22 — 3} form a basis for the span
of {z? — 1,2% +1,4,2z — 3}.

EXAMPLE 18.18. Find the coordinates of the vector 22 with respect to the basis {1, x—1,(x — 1)2}

We have already verified that {1, x—1,(x — 1)2} is a basis for P,. We now seek to explicitly identify the
coefficients ¢y, ¢, c3 such that

2?2 =c¢ +colx—1) +ez(x—1)2
Expanding the right hand side in powers of x we have

22 =c¢; —cy+c3+ (ca — 2c3) ¢ + cza?

Comparing the coefficients of like powers of x we see that we must have

c1— Cy + C3 = 0
Coy — 263 = 0
C3 = 1

This system is easily solved by back-substitution:
c3=1 = =2 = c=1

Thus,
2?2 =142z —1) + (z — 1)
Note: the right hand side is interpretable as the Taylor expansion of f(z) = 2% about z = 1.

ExAMPLE 18.19. Show that the mapping D : P, — P» : p(x) — x% — 2p is a linear transformation of Ps.
Find the kernel and range of %.

First let’s demonstrate that the mapping D is linear. If A € R, and p € P, then
d dp dp
DMp)=xz— (Ip)—2(Ap)=Xz— =2 p=A|lz— —2p | =D
(Ap) =z (Ap) = 2(Ap) = A — 2Ap (m o p> (p)
so D preserves scalar multiplication. If p1,ps € Ps, then

d dp: dpa
D (p, + =r— + -2 + =r— —2p1+ax— —2py =D + D
(p1 + p2) dr (p1+p2) (p1 + p2) dr P1 d P2 (p1) (p2)
so D preserves vector addition. Since D is a mapping between two vector spaces (albeit, the same one) that
preserves both scalar multiplication and vector addition, D is a linear transformation.

Now recall the a linear mapping T : R™ — R™ is interpretable as a m X n matrix A multiplying an n-
dimensional vector from the left, and the kernel of T' corresponds to the null space of A and the range of T
corresponds to the column space of A. To make use of these facts, we must first reinterpret the polynomials
in P, as vectors in R3. We thus map

p(x) = a2x2 +a1x 4+ ag = vV = (GO; ai, GQ)

Now to construct the matrix A we examine the action of T" on the standard basis vectors e; = (1,0,0),
e; = (0,1,0), and e5 = (0,0,1). This would correspond to looking at the action of D on the “standard
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basis vectors” p; = 1, po = z, and p3 = 22 of P,. We have

d
D(p) = o (1)=2(1)=-2=-2p1 = -2p1 + (0)p2 + (0)ps
d
Dip) = wg (@)= 2() = =20 = —pp = (O)p1 —p2 + (O)ps
N N N N S
D(p3) = T (%) = 2(xz*) = 22" — 22° =0 = (0)p1 + (0)p2 + (0)p3
Thus we take the matrix A to be
-2 0 0
0 -1 0
0o 0 0
The solution to the corresponding homogeneous linear system
-2 0 0 1 0
Ax=0 = 0 -1 0 x2 | =10
0o 0 O x3 0
corresponding to this matrix is evidently
0 0
x=| 0 | €span| O = p=span (p3) = span (xz)
T3 1

So the kernel of D is the {p € P, | p = cz?}.

The range of D will correspond to the column space of A, which in turn would be span of the column
vectors of A corresponding to the columns of a row-echelon form of A that contain pivots. Luckily, A is
already in row-echelon form, and the columns containing pivots are columns 1 and 2. Thus,

Range (D) ~ ColSp(A)
-2 0
= span 0 , —1
0 0

~ span(—2,—x)

span (1, x)



