
Math 3013 Lecture 3

January 14, 2022

Agenda

I Recap of Lectures 1 and 2

I The Dot Product

I The Basic Geometric Objects of Linear Algebra: points, lines,
planes and hyperplanes



Recap of Lectures 1 and 2

I In this course, vectors are usually ordered lists of numbers

I v = [v1, . . . , vn] is the usual way we’ll denote a generic
n-dimensional vector (each component vi , i = 1, . . . , n, is a
real number).

I Occasionally, we depict vectors as directed line segments for
visualization and intuition

I R ≡ the set of real numbers

I Rn = the set of n-dimensional (real) vectors

Rn ≡ {[v1, v2, . . . , vn] | v1, v2, . . . , vn ∈ R}



Two Fundamental Vector Operations

I Vector Addition

[v1, v2, . . . , vn]+[u1, u2, . . . , un] = [v1 + u1, v2 + u2, . . . , vn + un]

I Scalar Multiplication

λ · [v1, v2, . . . , vn] = [λv1, λv2, . . . , λvn]



Formal Properties of Fundamental Vector Operations of Rn

1. u + v = v + u (Commutativity of Vector Addition)

2. (u + v) + w = u + (v + w) (Associativity of Vector
Addition)

3. u + 0 = u (Additive Identity) (Here 0 is the n-dimensional
zero vector [0, 0, . . . , 0].)

4. u+(−1)u = 0 (Additive Inverses)

5. c (u + v) = cu + cv (Distributivity of Scalar
Multiplication over Vector Addition)

6. (c + d)u = cu + du (Distribution of Scalar Addition for
Scalar Multiplication)

7. c (du) = (cd)u (Compatibility of Scalar Multiplication
with Ordinary Multiplication of Numbers)

8. 1 · u = u (Preservation of Scale)



Formal Properties, Cont’d

Each of these 8 identities is simple to prove.
E.g., to show

u + v = v + u (1)

we simply calculate both sides using ordered lists of numbers for u
and v.
Explicitly, if u = [u1, . . . , un] and u = [v1, . . . , vn], then

u + v = [u1, . . . , un] + [v1, . . . , vn]

= [u1 + v1, . . . , un + vn] (by def. of vector addition)

= [v1 + u1, . . . , vn + un] (commutativity of addition in R)
= v + u



Formal Properties, Cont’d

Later in the course, we’ll see that any set V with two operations

+ : V × V → (Vector Addition)

∗ : R× V → V (Scalar Multiplication)

obeying the same 8 identities is going to behave exactly like Rn as
far as linear algebra goes.

Moreover, it will turn out that we will be able to calculate in V by
exploiting this tight connection between V and Rn.



The Dot Product : • : Rn × Rn −→ R
The vector dot product is an operation that ascribes a real number
to a pair of vectors:
The dot product is used to extract geometric information from
vectors

I Numerical/Linear Algebraic Version

[a1, a2, . . . , an] · [b1, b2, . . . , bn] ≡ a1b1 + a2b2 + · · ·+ anbn

≡
n∑

i=1

aibi

I Geometric Version:

a · b= ‖a‖ ‖b‖ cos (θab)

where

‖a‖ = length of the vector a

θab = angle between the vectors a and b



Computing lengths and angles in n-dimensions

From the geometric rule

a · b= ‖a‖ ‖b‖ cos (θab)

we can readily derive formulas for lengths and angles using the dot
product:

‖a‖ =
√

a · a

=
√

a21 + · · · a2n

θab = cos−1

(
a · b

√
a · a
√

b · b

)

= cos−1

 a1b1 + · · · anbn√
a21 + · · · a2n

√
b21 + · · ·+ b2n





Example 1

Compute the length of a = [1, 2,−1, 1] ∈ R4.

On the one hand, we have

a · a = (1) (1) + (2) (2) + (−1)(−1) + (1)(1) = 6

while according to the geometric rule

a · a = ‖a‖2 cos (0) = ‖a‖2

so we must have

‖a‖2 = 6 ⇒ ‖a‖ =
√
6



Example 2

Compute the angle between a = [1,−1, 1, 1] and b = [2, 1, 1,−1]

We have

‖a‖ =
√

a · a =

√
(1)2 + (−1)2 + (1)2 + (1)2=

√
4 = 2

‖b‖ =
√

b · b =

√
(2)2 + (1)2 + (1)2 + (−1)2=

√
7

and
a · b= (1) (2) + (−1) (1) + (1) (1) + (1) (−1) = 1

and so
1 = a · b= ‖a‖ ‖b‖ cos (θab) = 2

√
7 cos (θab)

Solving for θab yields

θab = cos−1

(
1

2
√
7

)
= 79.1◦



Vectors and Simple Geometric Objects
I Points ←→ single vectors

Just as points in 3-dimensional space correspond to their
coordinates [x , y , z ], points in an n-dimensional space
correspond to elements of Rn.

I Lines ←→ sets of vectors of the form

` = {p0 + td | t ∈ R}

(the line through p0 in the direction of d)
This is the principal way we will precribe lines in linear algebra.
Other ways of prescribing lines
I a line passing through the points a and b

` = {a + t (b− a) | t ∈ R}

I a line as a parameterized linear curve γ : R→ Rn

` = {γ(t) = [a1 + td1, a2 + td2, . . . , an + tdn] | t ∈ R}

(note that components of γ(t) are linear functions of the
parameter t).



Higher Dimensional Objects

I Planes ←→ sets of vectors of the form

P = {p0 + sd1 + td2 | s, t ∈ R}

I Hyperplanes

H = {{p0 + t1d1 + t2d2 + · · ·+ tkdk | t1, t2, . . . , tk ∈ R}}

Note that all examples considered previously are also hyperplanes
(of lower dimension)

I Points : sets of the form {p0}
I Lines : sets of the form {p0 + t1d1 | t1 ∈ R}
I Planes : sets of the form {p0 + t1d1 + t2d2 | t1, t2 ∈ R}
I General Hyperplane : sets of the form
{{p0 + t1d1 + t2d2 + · · ·+ tkdk | t1, t2, . . . , tk ∈ R}}



Linear Equations and Hyperplanes

Definition
A linear equation in n variables is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b (2)

The symbols a1, . . . , an represent particular real numbers and are
referred to as the coefficients of the variables x1, . . . , xn. The
symbol b on the right is also to be a real number and it is referred
to as the inhomogeneous term in the equation.

Theorem
The solutions of a linear equation is always a hyperplane in Rn.



Proof
.
Using high school algebra we can readily solve an equation of the
form (2) for xn

xn =
b

an
− a1

an
x1 − . . .−

an−1

an
xn−1

and so a solution vector would be of the form

x =


x1
...

xn−1

xn

 =


x1
...

xn−1
b
an
− a1

an
x1 − . . .− an−1

an
xn−1



=


0
...
0
b
an

+


x1
...
0

− a1
an
x1

+ · · ·+


0
...

xn−1

−an−1

an
xn−1





Proof, Cont’d

or

x =


0
...
0
b
an

+ x1


1
...
0
− a1

an

+ · · ·+ xn−1


0
...

−an−1

an


= p0 + x1d1 + · · · xn−1dn−1



WebAssign Problems

WebAssign Problem Set 1 must be submitted by 11:59 pm, Friday,
January 21.


