Math 3013 Lecture 3

January 14, 2022

Agenda

- Recap of Lectures 1 and 2
- The Dot Product
- The Basic Geometric Objects of Linear Algebra: points, lines, planes and hyperplanes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recap of Lectures 1 and 2

- In this course, vectors are usually ordered lists of numbers
- ▶ v = [v₁,..., v_n] is the usual way we'll denote a generic *n*-dimensional vector (each component v_i, i = 1,..., n, is a real number).
- Occasionally, we depict vectors as directed line segments for visualization and intuition
- $\mathbb{R} \equiv$ the set of real numbers
- $\blacktriangleright \mathbb{R}^n = \text{the set of } n \text{-dimensional (real) vectors}$

$$\mathbb{R}^n \equiv \{ [v_1, v_2, \ldots, v_n] \mid v_1, v_2, \ldots, v_n \in \mathbb{R} \}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Two Fundamental Vector Operations

Vector Addition

 $[v_1, v_2, \dots, v_n] + [u_1, u_2, \dots, u_n] = [v_1 + u_1, v_2 + u_2, \dots, v_n + u_n]$

Scalar Multiplication

$$\lambda \cdot [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n] = [\lambda \mathbf{v}_1, \lambda \mathbf{v}_2, \dots, \lambda \mathbf{v}_n]$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Formal Properties of Fundamental Vector Operations of \mathbb{R}^n

- 1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (Commutativity of Vector Addition)
- 2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (Associativity of Vector Addition)
- 3. $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (Additive Identity) (Here $\mathbf{0}$ is the *n*-dimensional zero vector [0, 0, ..., 0].)
- 4. $\mathbf{u} + (-1)\mathbf{u} = \mathbf{0}$ (Additive Inverses)
- 5. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (Distributivity of Scalar Multiplication over Vector Addition)
- 6. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (Distribution of Scalar Addition for Scalar Multiplication)
- 7. $c(d\mathbf{u}) = (cd)\mathbf{u}$ (Compatibility of Scalar Multiplication with Ordinary Multiplication of Numbers)
- 8. $1 \cdot \mathbf{u} = \mathbf{u}$ (Preservation of Scale)

Formal Properties, Cont'd

Each of these 8 identities is simple to prove. E.g., to show

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \tag{1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

we simply calculate both sides using ordered lists of numbers for ${\boldsymbol{u}}$ and ${\boldsymbol{v}}.$

Explicitly, if $\mathbf{u} = [u_1, \dots, u_n]$ and $\mathbf{u} = [v_1, \dots, v_n]$, then

$$\mathbf{u} + \mathbf{v} = [u_1, \dots, u_n] + [v_1, \dots, v_n]$$

= $[u_1 + v_1, \dots, u_n + v_n]$ (by def. of vector addition)
= $[v_1 + u_1, \dots, v_n + u_n]$ (commutativity of addition in \mathbb{R})
= $\mathbf{v} + \mathbf{u}$

Later in the course, we'll see that any set V with two operations

 $\begin{array}{rcl} + & : & V \times V \to & (\text{Vector Addition}) \\ * & : & \mathbb{R} \times V \to V & (\text{Scalar Multiplication}) \end{array}$

obeying the same 8 identities is going to behave exactly like \mathbb{R}^n as far as linear algebra goes.

Moreover, it will turn out that we will be able to calculate in V by exploiting this tight connection between V and \mathbb{R}^n .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Dot Product : • : $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$

The vector dot product is an operation that ascribes a real number to a pair of vectors:

The dot product is used to extract geometric information from vectors

$$[a_1, a_2, \dots, a_n] \cdot [b_1, b_2, \dots, b_n] \equiv a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$
$$\equiv \sum_{i=1}^n a_i b_i$$

Geometric Version:

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos\left(\theta_{ab}\right)$$

where

$$\|\mathbf{a}\| = \text{length of the vector } \mathbf{a}$$

 $\theta_{ab} = \text{angle between the vectors } \mathbf{a} \text{ and } \mathbf{b}$

Computing lengths and angles in *n*-dimensions

From the geometric rule

 $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos\left(\theta_{ab}\right)$

we can readily derive formulas for lengths and angles using the dot product:

$$\begin{aligned} \|\mathbf{a}\| &= \sqrt{\mathbf{a} \cdot \mathbf{a}} \\ &= \sqrt{a_1^2 + \cdots a_n^2} \\ \theta_{ab} &= \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\mathbf{a} \cdot \mathbf{a}} \sqrt{\mathbf{b} \cdot \mathbf{b}}} \right) \\ &= \cos^{-1} \left(\frac{a_1 b_1 + \cdots a_n b_n}{\sqrt{a_1^2 + \cdots a_n^2} \sqrt{b_1^2 + \cdots + b_n^2}} \right) \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example 1

Compute the length of $\boldsymbol{a} = [1,2,-1,1] \in \mathbb{R}^4.$

On the one hand, we have

$$\mathbf{a} \cdot \mathbf{a} = (1)(1) + (2)(2) + (-1)(-1) + (1)(1) = 6$$

while according to the geometric rule

$$\mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|^2 \cos\left(0\right) = \|\mathbf{a}\|^2$$

so we must have

$$\|\mathbf{a}\|^2 = 6 \quad \Rightarrow \quad \|\mathbf{a}\| = \sqrt{6}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example 2

Compute the angle between $\boldsymbol{a} = [1,-1,1,1]$ and $\boldsymbol{b} = [2,1,1,-1]$ We have

$$\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{(1)^2 + (-1)^2 + (1)^2 + (1)^2} = \sqrt{4} = 2$$
$$\|\mathbf{b}\| = \sqrt{\mathbf{b} \cdot \mathbf{b}} = \sqrt{(2)^2 + (1)^2 + (-1)^2} = \sqrt{7}$$

 and

$$\mathbf{a} \cdot \mathbf{b} = (1)(2) + (-1)(1) + (1)(1) + (1)(-1) = 1$$

and so

$$1 = \mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta_{ab}) = 2\sqrt{7} \cos(\theta_{ab})$$

Solving for θ_{ab} yields

$$\theta_{ab} = \cos^{-1}\left(\frac{1}{2\sqrt{7}}\right) = 79.1^{\circ}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Vectors and Simple Geometric Objects

▶ Points ↔ single vectors

Just as points in 3-dimensional space correspond to their coordinates [x, y, z], points in an *n*-dimensional space correspond to elements of \mathbb{R}^n .

• Lines \longleftrightarrow sets of vectors of the form

$$\ell = \{\mathbf{p}_0 + t\mathbf{d} \mid t \in \mathbb{R}\}$$

(the line through \boldsymbol{p}_0 in the direction of $\boldsymbol{d})$ This is the principal way we will precribe lines in linear algebra. Other ways of prescribing lines

a line passing through the points a and b

$$\ell = \{\mathbf{a} + t (\mathbf{b} - \mathbf{a}) \mid t \in \mathbb{R}\}$$

▶ a line as a parameterized linear curve $\gamma : \mathbb{R} \to \mathbb{R}^n$

$$\ell = \{\gamma(t) = [a_1 + td_1, a_2 + td_2, \dots, a_n + td_n] \mid t \in \mathbb{R}\}$$

(note that components of $\gamma(t)$ are linear functions of the parameter t).

Higher Dimensional Objects

 \blacktriangleright Planes \longleftrightarrow sets of vectors of the form

$$P = \{\mathbf{p}_0 + s\mathbf{d}_1 + t\mathbf{d}_2 \mid s, t \in \mathbb{R}\}$$

Hyperplanes

$$H = \{ \{ \mathbf{p}_0 + t_1 \mathbf{d}_1 + t_2 \mathbf{d}_2 + \dots + t_k \mathbf{d}_k \mid t_1, t_2, \dots, t_k \in \mathbb{R} \} \}$$

Note that all examples considered previously are also hyperplanes (of lower dimension)

- Points : sets of the form {p₀}
- Lines : sets of the form $\{\mathbf{p}_0 + t_1\mathbf{d}_1 \mid t_1 \in \mathbb{R}\}$
- ▶ Planes : sets of the form $\{\mathbf{p}_0 + t_1\mathbf{d}_1 + t_2\mathbf{d}_2 \mid t_1, t_2 \in \mathbb{R}\}$
- ► General Hyperplane : sets of the form $\{\{\mathbf{p}_0 + t_1\mathbf{d}_1 + t_2\mathbf{d}_2 + \dots + t_k\mathbf{d}_k \mid t_1, t_2, \dots, t_k \in \mathbb{R}\}\}$

Linear Equations and Hyperplanes

Definition

A linear equation in *n* variables is an equation of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$
 (2)

The symbols a_1, \ldots, a_n represent particular real numbers and are referred to as the **coefficients** of the **variables** x_1, \ldots, x_n . The symbol *b* on the right is also to be a real number and it is referred to as the **inhomogeneous term** in the equation.

Theorem

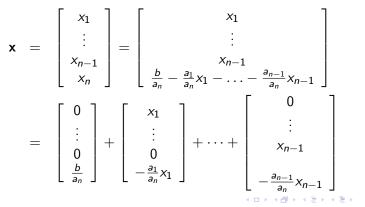
The solutions of a linear equation is always a hyperplane in \mathbb{R}^n .

Proof

Using high school algebra we can readily solve an equation of the form (2) for x_n

$$x_n = \frac{b}{a_n} - \frac{a_1}{a_n} x_1 - \ldots - \frac{a_{n-1}}{a_n} x_{n-1}$$

and so a solution vector would be of the form



900

Proof, Cont'd

or

$$\mathbf{x} = \begin{bmatrix} 0\\ \vdots\\ 0\\ \frac{b}{a_n} \end{bmatrix} + x_1 \begin{bmatrix} 1\\ \vdots\\ 0\\ -\frac{a_1}{a_n} \end{bmatrix} + \dots + x_{n-1} \begin{bmatrix} 0\\ \vdots\\ -\frac{a_{n-1}}{a_n} \end{bmatrix}$$
$$= \mathbf{p}_0 + x_1 \mathbf{d}_1 + \dots + x_{n-1} \mathbf{d}_{n-1}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

WebAssign Problems

WebAssign Problem Set 1 must be submitted by 11:59 pm, Friday, January 21.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○