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Lecture 5 : Matrices and Matrix Operations

Agenda:

1. Matrix Multiplication

2. Examples of Matrix Multiplication

3. Other Matrix Operations



Matrices

Recall

Definition
An n×m matrix is a rectangular arrangement of nm real numbers
with n rows and m columns.

The usual way we will indicate a generic n ×m matrix:

A =


a11 a12 · · · a1m

a21 a22
. . . a2m

...
...

. . .
...

an1 an2 · · · anm


Here aij is the entry in the i th row (reading left to right) and j th

column (reading top to bottom).



Matrix Multiplication

• Suppose A is a matrix with m columns and B is a matrix with m
rows. Then the matrix product AB is defined.
If A is an n ×m matrix and B is an m × p matrix, the matrix
product AB is the n × p matrix with entries

(AB)ij = Rowi (A) · Colj (B)

• If the number of columns of the first factor matrix A is not the
same as the number of rows of the second factor matrix B, then
the product AB is undefined.)
• the matrix dimensions follow the rule

(n ×m) · (m × p) −→ (n × p)



Examples of Matrix Multiplication

Example  1
2
3

 1 −1
2 −1
1 −2

 is undefined

since

(3× 1)(3× 2) −→ undefined matrix product

↑ ↑
mismatch

(matrix multiplication requires the number of columns in the first
factor to equal the number of rows in the second factor)



Example: Multiplying a Vector by Matrix

If a ≡ (a1, . . . , an) ∈ Rn is an ordered list of n numbers, there are
two different ways of interpreting A as a matrix a1

...
an

 (an n × 1 matrix)

↗
(a1, . . . , an)

↘
[a1, . . . , an] (an 1× n matrix)



Example: Multiplying a Vector by Matrix, Example[
1 2
−1 2

] [
1
−1

]
is defined

since for this product we have

(2× 2)(2× 1) −→ (2× 1)

↑ ↑
match

Explicitly computing the product:[
1 2
−1 2

] [
1
−1

]
=

[
(1, 2) · (1,−1)

(−1, 2) · (1,−1)

]
=

[
(1)(1) + (2)(−1)

(−1)(1) + (2)(−1)

]
=

[
−1
−3

]



On the other hand,

[
1 −1

] [ 1 2
−1 2

]
= [(1,−1) · (1,−1) (1,−1) · (2, 2)]

=
[

(1)(1) + (−1)(−1) (1)(2) + (−1)(2)
]

=
[

2 0
]

Comparing these two results[
1 2
−1 2

] [
1
−1

]
=

[
−1
−3

]
[

1 −1
] [ 1 2
−1 2

]
= [2 0]

So even though the 2× 1 matrix

[
1
−1

]
and the 1× 2 matrix[

1 −1
]

correspond to the same 2-dimensional vector (1,−1),

their products with the 2× 2 matrix

[
1 2
−1 2

]
are not the same.



Example

Let A =

[
2 1
−1 1

]
and B =

[
1 −1
−1 2

]
.

AB =

[
2 1
−1 1

] [
1 −1
−1 2

]
=

[
1 0
−2 3

]

BA =

[
1 −1
−1 2

] [
2 1
−1 1

]
=

[
3 0
−4 1

]
So

AB 6= BA

Thus, if the order of factors changes the value of a product of
matrices can also change.



Indeed, it can happen that a product AB exists but BA is not even
defined:

If A is an n ×m matrix and B is a m × p matrix, then

AB ∼ (n ×m)(m × p) −→ (n × p)

so the product AB is defined and it will be a n × p matrix.
On the other hand,

BA ∼ (m × p)(n ×m) −→ undefined

↑ ↑
match only when p = n

Moral: One must always maintain the order of factors when
multiplying matrices.



Another deviation from the ordinary multiplication of
numbers

Recall that for real numbers xy = 0 implies either x = 0 or y = 0.
Now consider [

−1 1
0 0

] [
1 1
1 1

]
=

[
0 0
0 0

]
This example shows that for matrices, it can happen that AB = 0
with neither A or B equal to the zero matrix 0.



The Identity Matrix
Consider the following matrix products

 1 0 0
0 1 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


 a11 a12 a13

a21 a22 a23
a31 a32 a33

 1 0 0
0 1 0
0 0 1

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


And so multiplying any 3× 3 matrix A by the matrix

I =

 1 0 0
0 1 0
0 0 1


just replicates the matrix A:

AI = IA = A



The Identity Matrix, Cont’d

The preceding example generalizes to arbitrary n × n matrices
(usually called “square matrices”) and motivates the following
definition.

Definition
The n × n Identity matrix is the the n × n matrix I whose entries
are given by

Iij =

{
1 if i = j
0 if i 6= j

⇐⇒ I =


1 0 · · · 0

0 1 0
...

...
. . .

0 0 · · · 1


In other words, I is the n × n matrix with 1’s along the diagonal
(running from the upper left to the lower right) and 0’s everywhere
else.



The Identity Matrix, Cont’d

The identity matrix I has the property that

AI = A whenever AI is defined

IA = A whenever IA is defined



Addition and Scalar Multiplication of Matrices

Definition
Suppose A and B are both n ×m matrices. Then the matrix sum
A + B is defined as the n ×m matrix with entries

(A + B)ij = Aij + Bij

Definition
Let λ ∈ R, and let A be an n ×m matrix. Then the scalar
product of A by λ is the n ×m matrix λA with entries

(λA)ij = λAij



Example

Let

A =

[
1 −1 2
1 0 1

]
, B=

[
0 1 −1
2 1 0

]
Then

A + B =

[
1 + 0 −1 + 1 2− 1
1 + 2 0 + 1 1 + 0

]
=

[
1 0 1
3 1 1

]

3A =

[
(3) (1) (3) (−1) (3) (2)
(3) (1) (3) (0) (3) (1)

]
=

[
3 −3 6
3 0 3

]



The Transpose of a Matrix

Definition
Suppose A is an n ×m matrix. The transpose of A is the m × n
matrix At with entries(

At
)
ij

= Aji ; for i = 1, . . . ,m j = 1, . . . , n

(note how the row and column indices have been reversed).
Equivalently, At is the matrix obtained from A by converting, in
order, the rows of A into columns.

Example

If

A =

 1 3
−2 1
3 −1


then

At =

[
1 −2 3
3 1 −1

]



Remarks

I If A is an n ×m matrix then A2 = AA is defined only if
m = n. However, the products AAt and AtA are always
well-defined.

AAt ∼ (n ×m matrix) (m × n matrix) = (n × n matrix)

AtA ∼ (m × n matrix) (n ×m matrix) = (m ×m matrix)

I If v is a column vector (i.e., an n× 1 matrix), then vt is a row
vector (i.e, a 1× n matrix) and

vtv = [v1 v2 · · · vn]


v1
v2
...
vn


=

[
(v1)2 + (v2)2 + · · ·+ (vn)2

]
=
[
‖v‖2

]



Remarks, Cont’d

I A square matrix is a matrix with the same number of rows as
it has columns.

I A square matrix A is called symmetric if At = A.

Example:  2 1 −1
1 3 2
−1 2 1


is a symmetric matrix.



Properties of the Transpose Operation

Theorem
Let A and B be matrices and let λ ∈ R.
I
(
At
)t

= A

I (λA)t = λAt

I (A + B)t = At + Bt

I (AB)t = BtAt (Note how the order of factors changed.)



Back to Linear Systems

Recall matrices were introduced as a means of writing large
systems as linear equations as a single matrix equation.

a11x1+ · · · +a1mxm = b1
...

...
an1x1+ · · · +anmxm = bn

 ⇐⇒ Ax = b

where

A=

 a11 · · · a1m
...

. . .
...

an1 · · · anm

 , x =

 x1
...
xm

 , b =

 b1
...
bn





Case 0: 0 equations in m unknowns
In this case, there are no conditions placed on the variables
x1, . . . , xm; and so each variable is allowed to range over the entire
real line. The “solution vectors” are just


x1
x2
...
xm

 | x1, x2, . . . , xm ∈ R

 = Rm



Case 1: 1 equation in m unknowns
We now impose a single linear equation

a1x1 + a2x2 + · · ·+ amxm = b

on m variables x1, . . . , xm. So long as am 6= 0 (so that the term
amxm actually contributes to the equation), this equation is readily
solved for xm :

xm =
b

am
− a1

am
x1 − · · · −

am−1

am
xm−1



Thus, a solution vector will be a vector of the form

x =


x1
x2
...
xm−1
b
am
− a1

am
x1 − · · · − am−1

am
xm−1



=


0
0
...
0
b
am

+


x1
0
...
0
− a1

am
x1

+ · · ·+


0
0
...
xm−1

−am−1

am
xm−1





or

x =


0
0
...
0
b
am

+ x1


1
0
...
0
− a1

am

+ · · ·+ xm−1


0
0
...
1
−am−1

am


Note how in this last form, the solution vector is expressed as a
point on a (m − 1)-dimensional hyperplane of vectors; i.e., a set of
vectors of the form

{p0 + t1d1 + · · ·+ tm−1dm−1 | t1, . . . , tm−1 ∈ R}



Geometric Construction of Solutions

We have seen that the solution space of a linear equation in m
variables is a (m − 1)-dimensional hyperplane in the vector space
of variable values.
Thus, to satisfy a two linear equations in m variables, a point x
must lie on both of the corresponding hyperplanes.
Satisfying multiple equations means that solution points live on
multiple hyperplanes.



Geometric Construction of Solutions, Cont’d

Let Eq1, . . . ,Eqn be a system of n linear equations in m unknowns.
and let H1, . . . ,Hn be the corresponding hyperplanes

Hi = solution set of Eqi , i = 1, . . . , n

Then a point in the solution set of a linear system must
simultaneously live on each hyperplane Hi

Thus, geometrically,

solution set =
n⋂

i=1

Hi

i.e., a point in the solution set must lie in the intersection of all the
equation-hyperplanes.



Solving Systems of Linear Equations

−→ Monday’s Lecture


