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Lecture 6 : Solving Linear Systems

Agenda:

1. Review: Matrix Operations

2. Linear Systems

3. Interpreting Solution Sets Geometrically

4. The Row Reduction Method



Matrix Multiplication

Suppose A and B are matrices.
• If #Columns (A) ̸= #Rows (B), AB is not defined.
• If #Columns (A) = #Rows (B), AB is is defined and its entries
are given by

(AB)ij = Rowi (A) · Colj (B)

• the matrix dimensions follow the rule

(n ×m) · (m × p) −→ (n × p)



The Identity Matrix, Cont’d

Definition
The n × n Identity matrix is the the n × n matrix I whose entries
are given by

Iij =

{
1 if i = j
0 if i ̸= j

⇐⇒ I =


1 0 · · · 0

0 1 0
...

...
. . .

0 0 · · · 1


In other words, I is the n × n matrix with 1’s along the diagonal
(running from the upper left to the lower right) and 0’s everywhere
else.



The Identity Matrix, Cont’d

The identity matrix I has the property that

AI = A whenever AI is defined

IA = A whenever IA is defined



Addition and Scalar Multiplication of Matrices

Definition
Suppose A and B are both n ×m matrices. Then the matrix sum
A+ B is defined as the n ×m matrix with entries

(A+ B)ij = Aij + Bij

Definition
Let λ ∈ R, and let A be an n ×m matrix. Then the scalar
product of A by λ is the n ×m matrix λA with entries

(λA)ij = λAij



The Transpose of a Matrix

Definition
Suppose A is an n ×m matrix. The transpose of A is the m × n
matrix At with entries(

At
)
ij
= Aji ; for i = 1, . . . ,m j = 1, . . . , n

(note how the row and column indices have been reversed).
Equivalently, At is the matrix obtained from A by converting, in
order, the rows of A into columns.

Example

If

A =

 1 3
−2 1
3 −1


then

At =

[
1 −2 3
3 1 −1

]



Properties of the Transpose Operation

Theorem
Let A and B be matrices and let λ ∈ R.
▶

(
At

)t
= A

▶ (λA)t = λAt

▶ (A+ B)t = At + Bt

▶ (AB)t = BtAt (Note how the order of factors changed.)



Back to Linear Systems

Recall matrices were introduced as a means of writing large
systems as linear equations as a single matrix equation.

a11x1+ · · · +a1mxm = b1
...

...
an1x1+ · · · +anmxm = bn

 ⇐⇒ Ax = b

where

A=

 a11 · · · a1m
...

. . .
...

an1 · · · anm

 , x =

 x1
...
xm

 , b =

 b1
...
bn





Linear Systems

Recall that a linear equation in m unknowns is an equation that
can be written in the from

a1x1 + a2x2 + · · ·+ amxm = b

An n ×m linear system is a set of n linear equations in m
unknowns:

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2
...

an1x1 + an2x2 + · · ·+ anmxm = bn

Today, we begin a discussion of how to solve large linear systems.



Understanding Solution Sets Geometrically

Case 0: 0 equations in m unknowns
In this case, there are no conditions placed on the variables
x1, . . . , xm
And so each variable xi is allowed to range over the entire real line.
The “solution vectors” are just


x1
x2
...
xm

 | x1, x2, . . . , xm ∈ R

 = Rm



Case 1: 1 equation in m unknowns

We now impose a single linear equation

a1x1 + a2x2 + · · ·+ amxm = b

on m variables x1, . . . , xm.
Assume am ̸= 0 (so that the term amxm actually contributes to the
equation)
Then this equation is readily solved for xm :

xm =
b

am
− a1

am
x1 − · · · −

am−1

am
xm−1



Thus, a solution vector will be a vector of the form

x =


x1
x2
...
xm−1
b
am
− a1

am
x1 − · · · − am−1

am
xm−1



=


0
0
...
0
b
am

+


x1
0
...
0
− a1

am
x1

+ · · ·+


0
0
...
xm−1

−am−1

am
xm−1


(decomposing X into a sum of vectors where the individual vectors
in the sum depend only one of the variables)



or, pulling out the common factors xi of each vector on the R.H.S.
(right hand side),

x =


0
0
...
0
b
am

+ x1


1
0
...
0
− a1

am

+ · · ·+ xm−1


0
0
...
1
−am−1

am


Note how in this last form, the solution vector is expressed as a
point on a (m − 1) dimensional hyperplane of vectors; i.e., a set of
vectors of the form

{p0 + t1v1 + · · ·+ tm−1vm−1 | t1, . . . , tm−1 ∈ R} ⊂ Rm

Conclusion: the solution set of a single linear equation in m
unknowns is an (m− 1)-dimensional hyperplane in the vector space
Rm.



Example: Systems of Linear Equations in Three Variables.

In order to help visualize the solution set of linear systems, let’s
now consider what can happen for linear systems in 3 variables.
Consider the following set of equations in three variables x , y , and
z :

x + y + z = 2 (Eq1)

x − z = 3 (Eq2)

2x + 2y + 2z = 2 (Eq3)

x + y + z = −1 (Eq4)

y − z = −1 (Eq5)

x + 2y = −2 (Eq6)

Each of these equations will correspond to a particular
2-dimensional plane in R3.



Below is a plot of the solution set of Eq1: x + y + z = 2

Note how this appears as a 2-dimensional plane in the vector space
R3



2 Linear Equations in 3 Variables: the usual situation
Below we have plotted the solution set of equations Eq1 and Eq2.

Note how the points common to both solution planes is a line in R3

Moral: Generally speaking, the imposition of an additional
equation reduces the dimension of the hyperplane solution
space by 1



2 Linear Equations in 3 Variables: redundant equations
Below we have plotted the solution set of equations Eq1 and Eq3.

Note how we have the same planar solution set as that of Eq1.
This is because the condition implied by Eq3 is already implied
Eq1.
Moral: Additional equations do not always reduce the
dimension of the solution sets



2 Linear Equations in 3 Variables: contradictory equations
Below we have plotted the solution set of equations Eq1 and Eq4.

Note the two solution planes do not intersect at all.
This is because if both equations were true, 2 = −1 −→ a
mathematical contradiction.
Moral: Additional equations can lead to no solutions



Summary: The Geometry of Planar Intersections in R3

When 2 solution planes intersect, either

▶ the intersection is a line (general situation)

▶ the intersection is a plane (redundant equations)

▶ the intersection is empty (contradictory equations)



More generally, for large systems of equations

An additional equation causes either

▶ the dimension of the hyperplane solution set to be reduced by
1 (the general situation)

▶ the dimension of the hyperplane solution is unchanged
(additional equation is redundant to conditions already
imposed)

▶ the solution set is made empty (addition equation contradicts
previous equations)



3 linear equations in 3 unknowns: Case 1
The general situation:

# unknowns−# equations = 0 free variables

and so we should expect a 0-dimensional solution hyperplane (i.e.
a unique vector solution)
To illustrate this case, I have plotted the solution set of equations
Eq1, Eq2, and Eq5 below



Case 2: Redundant Equations
If an additional equation is already implied by previous equations,
then the solution set is unchanged.
Below we have plotted the solution set of equations Eq4, Eq5 and
Eq6.

Note how the last equation is actually the sum of the first two
equations. So the last equation does not put any new condition on
the variables.



Case 3: Contradictory Equations
If an additional equation contradicts previous equations, then the
solution set is empty.
Below we have plotted the solution set of equations Eq4, Eq5 and
Eq6.

Note how the last equation is actually the sum of the first two
equations. So the last equation does not put any new condition on
the variables.



Generalization and Summary: the solution sets of n ×m
linear systems

The solution set of n linear equations in m unknowns is either

▶ A hyperplane in Rm of dimension m − n (if all equations are
independent)

▶ A hyperplane in Rm of dimension > m − n (if there are some
redundant equations)

▶ The empty set (if there are contradictory equations)



Elementary Operations

Elementary Operations are things we can do to equations that
do not change their solution:
Consider the following 2 linear equations

x + y = 2 (Eq1)

x − y = 1 (Eq2)

Then

(i) we can change the order of equations

Eq1↔ Eq2 :

{
x − y = 1
x + y = 2

}
has the same solution set



Elementary Operations, Cont’d

(ii) we can replace an equation by a non-zero scalar multiple of
itself

Eq2→ 2∗Eq2 :

{
x + y = 2

2x − 2y = 2

}
has the same solution set

(iii) we can replace an equation by its sum with another equation

Eq2→ Eq2+Eq1 :

{
x + y = 2
2x + 0 = 3

}
has the same solution set



Solving Linear Systems by Using Elementary Operations

Below is an example of how to find a solution to a linear system by
manipulating the equations (instead of solving for variables and
then substituting for variables).

{
x + y = 1
x − y = 3

}
Eq2→ Eq2 + Eq1
−−−−−−−−−−−−−→

{
x + y = 1
2x = 4

}
Eq2→ 1

2
Eq2

−−−−−−−−−→

{
x + y = 1
x = 2

}
Eq1→ Eq1− Eq2
−−−−−−−−−−−−−→

{
y = −1
x = 2

}
Eq1←→ Eq2
−−−−−−−−−→

{
x = 2
y = −1

}
(the solution)



The Matrix Method for Solving Linear Systems

Recall that the data that goes into specifying an n ×m linear
system

a11x1 + · · ·+ a1mxm = b1
...

an1x1 + · · ·+ anmxm = bn

is an n ×m matrix A, an m × 1 matrix of variables x, and a n × 1
matrix of numbers b.

A =

 a11 · · · a1m
...

. . . · · ·
an1 · · · anm

 , x =

 x1
...
xm

 , b =

 b1
...
bn


In fact, the matrix equation Ax = b is equivalent to the original
linear system.



Augmented Matrices

Definition
The augmented matrix of an n ×m linear system Ax = b is the
n × (m + 1) matrix [A | b] formed by adjoining the column vector
b to the n ×m matrix A

[A | b] =

 a11 · · · a1m b1
...

. . .
...

...
an1 · · · anm bn





Augmented Matrices and Equations: Example

The augmented matrix of the 3× 3 linear system

x1 + 2x2 − x3 = 2

x1 − x2 + x3 = 1

x2 − 2x3 = 3

is

[A | b] =

 1 2 −1 2
1 −1 1 1
0 1 −2 3





The Idea To Be Pursued

Schematically,

linear system → augmented matrix [A|b]
[A | b] →

[
A′ | b′

]
, the augmented matrix of the solution[

A′|b′
]
→ equations of solution

In the second step we will be using operations on augmented
matrices that correspond to operations on equations that don’t
change their solution.


