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Example: Solving Linear Systems
Express the solution of the following linear system as a hyperplane.

x1 + x2 + 2x4 = 1

2x1 + 2x2 + x3 + 5x4 = 4

x3 + x4 = 2

[A|b] =

 1 1 0 2 1
2 2 1 5 4
0 0 1 1 2

 R2 → R2 − 2R1−−−−−−−−−−−−→

 1 1 0 2 1
0 0 1 1 2
0 0 1 1 2


R3 → R3 − R2−−−−−−−−−−→

 1 1 0 2 1
0 0 1 1 2
0 0 0 0 0


x1 + x2 + 2x4 = 1

x3 + x4 = 2
0 = 0

→


x1 = 1− x2 − 2x4
x3 = 2− x4
0 = 0



Example, Cont’d

Solution equations expressing fixed variables in terms of free
variables

x1 = 1− x2 − 2x4

x3 = 2− x4

x =


x1
x2
x3
x4

 =


1− x2 − 2x4
x2
2− x4
x4

 =


1
0
2
0

+x2


−1
1
0
0

+x4


−2
0
−1
1





Inverses of Matrices

Motivation:
Consider an n × n linear system written in matrix notation:

Ax = b

Suppose there was an n × n matrix C such that

CA = I , the n × n identity matrix

Then multiplying both sides from the left by C, we find

C (Ax) = C (b)

⇒ (CA) x = Cb

⇒ (I) x = Cb

⇒ x = Cb



In other words, if we had a matrix C such that CA = I, then we
could solve Ax = b simply by multiplying both sides from the left
by C.

Definition
Suppose A is an n × n matrix. Then any matrix C such that

CA = I and AC = I

is called a matrix inverse of A.

Example: Let A =

[
1 2
1 3

]
Then C =

[
3 −2
−1 1

]
is a matrix

inverse of A; For

AC =

[
1 2
1 3

] [
3 −2
−1 1

]
=

[
3− 2 −2 + 2
3− 3 −2 + 3

]
=

[
1 0
0 1

]
= I

and

CA =

[
3 −2
−1 1

] [
1 2
1 3

]
=

[
3− 2 6− 6
1− 1 −2 + 3

]
=

[
1 0
0 1

]
= I



Properties of Matrix Inverses
▶ Only square (n × n) matrices can have inverses.

▶ If a matrix A has an inverse then it is unique.
Proof : Suppose

AC = I = CA

AD = I = DA

Then, on the one hand,

DAC = D (AC) = D (I)= D

while, on the other,

DAC = (DA)C =(I)C = C

and so
D = DAC = C ⇒ D = C

So the two inverses of A have to be the same matrix.



Properties of Inverse Matrices, Cont’d

Definition
The unique matrix inverse to A, if it exists, is denoted by A−1

▶ If A and B are two n × n matrices with inverses A−1 and
B−1, respectively, then the product matrix AB has an inverse
and it is

(AB)−1 = B−1A−1

Proof:

(AB)
(
B−1A−1

)
= A

(
BB−1

)
A−1

= A (I)A−1

= AA−1

= I

So B−1A−1 is the unique inverse of the matrix AB



Digression: Elementary Matrices

Definition
Let I be the n × n identity matrix and let R be an elementary row
operations. Then the elementary matrix corresponding to R is
the matrix ER obtained by applying the operation R to I

ER ≡ R(I)



Examples of Elementary Matrices

Let I =

[
1 0
0 1

]
be the 2× 2 identity matrix.

ER1↔R2 = RR1↔R2

([
1 0
0 1

])
=

[
0 1
1 0

]
ER2→3R2 = RR2→3R2

([
1 0
0 1

])
=

[
1 0
0 3

]
ER2↔R2+2R1 = RR2→R2+2R1

([
1 0
0 1

])
=

[
1 0
2 1

]



Elementary Matrices and Row Operations

Theorem
Suppose ER is the n × n elementary matrix corresponding to a
elementary row operation R. Then for any n × n matrix A

R(A) = ERA

Thus, an elementary row operation can be implemented either
directly on A or by multiplying A by the corresponding elementary
matrix.



Examples: Implementing Row Operations via
Multiplication by Elementary Matrices

Let

A =

[
a b
c d

]
We can implement elementary row operations on A two different
ways:
Case 1: Row Interchanges:

RR1↔R2 (A) =

[
c d
a b

]
, ER1↔R2 =

[
0 1
1 0

]
ER1↔R2A =

[
0 1
1 0

] [
a b
c d

]
=

[
0 + c 0 + d
a+ 0 b + 0

]
=

[
c d
a b

]
So

RR1↔R2 (A) = ER1↔R2A



Examples: Implementing Row Operations via
Multiplication by Elementary Matrices, Cont’d

Case 2: Row Rescalings:

RR2→3R2 (A) =

[
a b
3c 3d

]
, ER2→3R2 =

[
1 0
0 3

]
ER2→3R2A =

[
1 0
0 3

] [
a b
c d

]
=

[
a+ 0 b + 0
0 + 3c 0 + 3d

]
=

[
a b
3c 3d

]
So

RR2→3R2 (A) = ER2→3R2A



Examples: Implementing Row Operations via
Multiplication by Elementary Matrices, Cont’d

Case 3: Replacing a row by its sum with a multiple of another row:

RR2←→R2+2R1 (A) =

[
a b

c + 2a d + 2b

]
ER2→R2+2R1 =

[
1 0
2 1

]
ER2→R2+2R1A =

[
1 0
2 1

] [
a b
c d

]
=

[
a+ 0 b + 0
2a+ c 2b + d

]
=

[
a b

c + 2a d + 2b

]
So

RR1←→2R2 (A) = ER2→R2+2R1A



Calculating Matrix Inverses

▶ Suppose a matrix A can be row reduced to the identity matrix.

▶ Then there is a sequence R1,R2, . . . ,Rk that convert A to
the identity matrix:

I = Rk (· · ·R2 (R1 (A)))

▶ Then there is a product of elementary matrices that does the
same thing

I = ERk
ERk−1

· · ·ER1A

▶ Since I = BA =⇒ B = A−1, we conclude

A−1 = ERk
ERk−1

· · ·ER1



Procedure for Calculating A−1

1. Find a sequence of elementary row operations R1, . . . ,Rk

that convert A to the identity matrix.

2. A−1 will be the corresponding product of elementary matrices

A−1 = ERk
ERk−1

· · ·ER1

Next: We’ll make this method of computing A−1 more efficient.



A Row Reduction Algorithm for Computing A−1

Now let [A | I] be the n × 2n matrix obtained by adjoining the
n × n identity matrix to A:

[A | I] =

 a11 · · · a1n 1 · · · 0
...

. . .
...

...
. . .

...
an1 · · · ann 0 · · · 1


Suppose A can be row-reduced to the identity matrix via a
sequence R1, . . . ,Rk of elementary row operations:

Rk (· · ·R1 (A)) = I

then under the same sequence of elementary row operations [A | I]
row reduces to

Rk (· · ·R1 ([A | I])) = [Rk (· · ·R1 (A)) | Rk (· · ·R1 (I))]

= [I | Rk (· · ·R1 (I))]



A Row Reduction Algorithm for Computing A−1, Cont’d

So if A can be row-reduced to I via elementary row operations
R1, . . . ,Rk , we also have

Rk (· · ·R1 ([A | I])) = [I | Rk (· · ·R1 (I))]

But

Rk (· · ·R1 (I)) = ERk
· · ·ER1I = ERk

· · ·ER1= A−1

We can now conclude:
If A row reduces to I, then [A | I] row reduces to

[
I | A−1

]
using

the same sequence of row operations.



Algorithm for Calculating A−1

We now note that
[
I|A−1

]
is always the Reduced Row Echelon

Form of [A|I]:

[
I|A−1

]
∼


1 0 · · · 0 ∗ ∗ · · · ∗
0 1 · · · 0 ∗ ∗ · · · ∗
...

. . .
... ∗ ∗ · · · ∗

0 0 · · · 1 ∗ ∗ · · · ∗





Calculating Matrix Inverses via Row Reduction

We have thus demonstrated

Theorem
Suppose A is an n × n matrix

▶ If A is row reducible to the identity matrix, then the R.R.E.F.
of [A | I] is

[
I | A−1

]
▶ Otherwise, A has no inverse

So a method for calculating A−1 would be to row reduce [A | I] to
its R.R.E.F. [A′ | I′]
▶ If A′ = I then A−1 = I′

▶ Otherwise, A doesn’t have an inverse.



Example

Example If possible, find the inverse of A =

 0 0 1
1 0 0
0 1 0

 .

[A | I] =

 0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

R1 ↔ R2−−−−−→

 1 0 0 0 1 0
0 0 1 1 0 0
0 1 0 0 0 1


R2 ←→ R3−−−−−−−→

 1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0

 (R.R.E .F . of [A | I])

Since the left hand side of the R.R.E.F. of [A | I] is the identity
matrix, the right hand side will be A−1. Thus,

A−1 =

 0 1 0
0 0 1
1 0 0





Example If possible, find the inverse of A =

 1 2 1
1 −1 0
1 5 2



[A | I] =

 1 2 1 1 0 0
1 −1 0 0 1 0
1 5 2 0 0 1


R2 → R2 − R1

R3 → R3 − R1
−−−−−−−−−−−→

 1 2 1 1 0 0
0 −3 −1 −1 1 0
0 3 1 −1 0 1


R3 → R3 + R2−−−−−−−−−−→

 1 2 1 1 0 0
0 −3 −1 −1 1 0
0 0 0 −2 1 1


We can stop here; for the left hand side has a zero row - which
implies it can not be reduced further to the identity matrix. This
means [A | I] can not be row reduced to

[
I | A−1

]
, and so A has

no inverse.


