
Lecture 11 : The Fundamental Theorem of
Invertible Matrices

Math 3013
Oklahoma State University

February 9, 2022

Agenda:

1. Matrix Inverses
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Matrix Inverses

Definition
Suppose A is an n × n matrix. Then any matrix B such that

BA = I and AB = I

is called a matrix inverse of A.

Theorem
If a square matrix A has an inverse, it is unique.

Notation: If A is invertible, we will denote its (unique) inverse by
A−1



Calculating Matrix Inverses - the underlying idea
▶ Uniqueness of A−1:

If we can find a matrix C such that CA = I, then C = A−1

▶ Elementary matrices allow one to implement elementary row
operations via matrix multiplication

If ER := R (I) , then R (A) = ERA

▶ If A can be row reduced to I, there there will be a sequence of
elemementary row operations R1,R2, . . . ,Rk that transform
A to I:

I = Rk (· · ·R2 (R1 (A)))

= ERk
· · ·ER2ER1A

⇒ A−1 = ERk
· · ·ER2ER1

So all we need a procedure for directly calculating

A−1 = ERk
· · ·ER2ER1



Algorithm for Calculating A−1

Theorem
Suppose A is an n × n matrix and let [A′′|I′′] = R.R.E .F . ([A|I]).
▶ If A′′ = I, then A−1 = I′′ .

▶ If A′′ ̸= I, then A has no inverse.



Calculating Inverse Matrices: Example

Find the inverse of

A =

 2 1 4
3 2 5
0 −1 1


We have

[A|I] =

 2 1 4 1 0 0
3 2 5 0 1 0
0 −1 1 0 0 1


↓ R2 → R2 −

3

2
R1 2 1 4 1 0 0

0 1
2 −1 −3

2 1 0
0 −1 1 0 0 1





 2 1 4 1 0 0
0 1

2 −1 −3
2 1 0

0 −1 1 0 0 1


↓ R2 → 2R2 2 1 4 1 0 0

0 1 −2 −3 2 0
0 −1 1 0 0 1


↓ R3 → R3 + R2 2 1 4 1 0 0

0 1 −2 −3 2 0
0 0 −1 −3 2 1

 = R.E .F . ([A|I])



 2 1 4 1 0 0
0 1 −2 −3 2 0
0 0 −1 −3 2 1


↓ R3 → −R3 2 1 4 1 0 0

0 1 −2 −3 2 0
0 0 1 3 −2 −1


↓ R2 + 2R3 2 1 4 1 0 0

0 1 0 3 −2 −2
0 0 1 3 −2 −1





 2 1 4 1 0 0
0 1 0 3 −2 −2
0 0 1 3 −2 −1


↓ R1 → R1 − 4R3 2 1 0 −11 8 4

0 1 0 3 −2 −2
0 0 1 3 −2 −1


↓ R1 → R1 − R2 2 0 0 −14 10 6

0 1 0 3 −2 −2
0 0 1 3 −2 −1





 2 0 0 −14 10 6
0 1 0 3 −2 −2
0 0 1 3 −2 −1


↓ R1 →

1

2
R1 1 0 0 −7 5 3

0 1 0 3 −2 −2
0 0 1 3 −2 −1





R.R.E .F . ([A|I]) =

 1 0 0 −7 5 3
0 1 0 3 −2 −2
0 0 1 3 −2 −1

 =
[
I|A−1

]
and so

A−1 =

 −7 5 3
3 −2 −2
3 −2 −1





The Fundamental Theorem of Invertible Matrices

The following theorem shows the close connections between
various problems we have considered.

Theorem
Let A be an n × n matrix. The following statements are equivalent
(i.e., if any one of these statements is true, then all are true).

(a) A−1 exists.

(b) Every linear system Ax = b has a unique solution.

(c) Ax = 0 has only the trivial solution x = 0.

(d) The R.R.E.F. of A is the n × n identity matrix.

(e) A is a product of elementary matrices.



Proof: We’ll demonstrate the following chain of implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a)



(a) ⇒ (b)

To show : if A−1 exists, then Ax = b has a unique solution

Suppose A is invertible, with inverse A−1.
I claim x = A−1b is a solution of Ax = b. Indeed,

Ax = A
(
A−1b

)
=

(
AA−1

)
b = Ib = b

and so x = A−1b is a solution.
Now suppose y is any other solution of Ax = b. Then

Ay = b ⇒ A−1Ay = A−1b

⇒ Iy = A−1b

⇒ y = A−1b

(so y is the same solution as we had before.)



(b)⇒(c)

To show : if linear systems Ax = b have unique solutions for each
b, then the only solution of Ax = 0 is x = 0.

Suppose every linear system Ax = b has a unique solution.
Then if we choose b = 0, then Ax = 0 has a unique solution.
On the other hand, x = 0 is obviously a solution of Ax = 0.
Since by hypothesis the solution of such an equation is unique, we
conclude that Ax = 0 has x = 0 as its unique solution.



(c) ⇒ (d)

To show : if x = 0 is the only solution of Ax = 0, then A is row
reducible to the identity matrix

This follows from our row reduction algorithm for solving linear
systems.
Assume x = 0 is the unique solution to Ax = 0
Then the solution equation for x corresponds to the augmented
matrix 

1 0 · · · · · · 0 0
0 1 · · · · · · 0 0
...

. . .
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


for which the coefficient part (the “A-part” of the augmented
matrix) is the identity matrix I.



(c) ⇒ (d) , Cont’d

On the other hand, since all solutions to a linear system Ax = 0
are obtainable by row reducing the augmented matrix [A | 0] to its
unique Reduced Row Echelon Form, we can conclude that A must
be row reducible to the identity matrix.



(d) ⇒ (e)

To show : if A can be row reduced to I, then A is a product of
elementary matrices

Assume there is a sequence R1,R2, . . . ,Rk of elementary row
operations that systematically converts A to the identity matrix I.
Say,

Rk (Rk−1 (· · · (R1 (A)))) = I

or, implementing the row operations via matrix multiplication by
elementary matrices,

ERk
ERk−1

· · ·ER1A = I

This tells us that

A−1 = ERk
ERk−1

· · ·ER1

So A−1 is a product of elementary matrices



(d) ⇒ (e), Cont’d
Next we use two facts

Lemma
If ER is an elementary matrix, then ER is invertible and (ER)

−1 is
another elementary matrix.

Lemma
If A1,A2, . . . ,Aℓ are invertible matrices, then the matrix product
A1A2 · · ·Aℓ is invertible and

(A1A2 · · ·Aℓ)
−1 = (Aℓ)

−1 · · · (A2)
−1 (A1)

−1

Thus,

A =
(
A−1

)−1

=
(
ERk

ERk−1
· · ·ER1

)−1

= E−1
R1

E−1
R2

· · ·E−1
Rk

and so A is a product of elementary matrices.



(e) ⇒ (a)

To show: if A is a product of elementary matrices, then A is
invertible.

Suppose
A = ER1 · · ·ERk

Then because each of the matrix factor ERi
is invertible, A is also

invertible and, moreover,

A−1 = (ER1ER2 · · ·ERk
)−1 = (ERk

)−1 · · · (ER2)
−1 (ER1)

−1

Having completed the chain of implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a)

the theorem is now proved.



Overview of Material to be Covered on First Exam

▶ Vectors as elements of Rn

▶ Vector addition
▶ Scalar multiplication
▶ The dot product

▶ Simple Geometric Contructs: Points, Lines, Planes and
Hyperplanes as Sets of Vectors

H = {x ∈ Rn | x = p0 + t1v1 + t2v2 · · · tkvk ; t1, t2, . . . , tk ∈ R}

▶ Matrices and Matrix Algebra
▶ Matrix Addition
▶ Scalar Multiplication of Matrices
▶ Matrix Multiplication
▶ Matrix Transposes



Overview, Cont’d

▶ Linear Systems
▶ The geometry of solution sets of linear systems

▶ solution set of single linear equation in m unknowns is a
(m − 1)-dimenional hyperplane in Rm

▶ solution set of n equations in m-unknowns is the intersection
of n hyperplanes in Rm

▶ Naive Expection: Given n linear equations in m unknowns, one
expects the solutions to form a (m − n)-dimensional
hyperplane in Rm

Exceptions:
▶ linear systems with redundant equations
▶ linear systems with internal contradictions

▶ Matrix formulation: Ax = b
▶ Solving linear systems via row reduction

▶ Augmented Matrices [A | b]
▶ Row Echelon Form
▶ Reduced Row Echelon Form
▶ Fixed Variables and Free Variables
▶ Solution Set as a Hyperplane



Overview, Cont’d

▶ Matrix Inverses
▶ Calculating A−1

▶ The Fundamental Theorem of Matrix Inverses
Theorem: Let A be an n × n matrix. The following
statements are equivalent

(a) A is invertible.
(b) Every linear system Ax = b has a unique solution.
(c) Ax = 0 has only the trivial solution x = 0.
(d) The R.R.E.F. of A is the n × n identity matrix.
(e) A is a product of elementary matrices.


