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Agenda

▶ Quick Overview of 1st Exam Topics

▶ The Span of a Set of Vectors

▶ Subspaces



Quick Overview of Material on First Midterm
I. Vectors in Rn

A. Vector Addition + : Rn × Rn → Rn

B. Scalar Multiplication ∗ : R× Rn → Rn

C. Linear Combinations of Vectors : e.g. αv + βu+ · · ·
D. Dot Product · : Rn × Rn → R

II. Geometry of Vector Spaces

A. Points, Lines, Planes and Hyperplanes

H = {x ∈ Rn | x = p0 + t1v1 + t2v2 · · · tkvk ; t1, t2, . . . , tk ∈ R}

B. Solutions Sets of Linear Equations are (intersections of)
Hyperplanes
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Overview, Cont’d

III. Matrices and Matrix Algebra

A. Matrices and Linear Systems : Augmented Matrices

a11x1 + · · ·+ a1mxm = b1
...

...
...

an1x1 + · · ·+ anmxm = bn

⇐⇒
 a11 · · · a1m b1

...
. . .

...
...

an1 · · · anm bn


B. Matrix Multiplication

(AB)ij = Rowi (A) · Colj (B)

C. Matrix Addition and Scalar Multiplication

D. The Transpose of a Matrix



Overview, Cont’d

IV. Solving Systems of Linear Equations

A. Elementary Operations on Systems of Equations

B. Elementary Row Operations

(i) Ri ←→ Rj

(ii) Ri −→ λRi , λ ̸= 0
(iii) Ri −→ Ri + λRj

C. Row-Echelon Form


∗ ∗ · · · ∗ ∗
0 0 ∗ · · · ∗
...

...
0 · · · 0 ∗ ∗



D. Reduced Row-Echelon Form


1 ∗ 0 0 ∗
0 0 1 0 ∗
...

...
0 · · · 0 1 ∗





Overview, Cont’d

E. Solving Linear Systems
▶ convert to augmented matrix [A | b]
▶ row reduce to R.E.F. (pivots occur in down and to the right)
▶ row reduce further to R.R.E.F. (R.E.F. with pivots = 1 and

0’s above and below pivots)
▶ identify fixed and free variables in solution

▶ fixed variables ←→ columns of R.E.F. with pivots
▶ free variables ←→ columns of R.E.F. without pivots

▶ write down solution set as a hyperplane

(i) R.R.E.F. −→ equations expressing fixed variables in terms of
free variables

(ii ) Use equations from (ii) to express solution vectors in terms
of the free variables

(iii) Expand the solution vector in terms of the free parameters

N.B. There is no solution whenever you have whose only
non-zero entry is in the last column of the augmented matrix.



Overview, Cont’d

V. Inverses of Square Matrices

A. Definition and Properties of Matrix Inverses
B. Elementary Matrices
C. Calculating Matrix Inverses

▶ form adjoined matrix [A | I]
▶ row reduce [A | I] to R.R.E.F.
▶ if L.H.S. of R.R.E.F matrix is the identity matrix I, then the

R.H.S. is A−1

if not, A has no inverse

D. Fundamental Theorem of Matrix inverses and n × n linear
systems

▶ A has an inverse.
▶ Ax = b has a unique solution for every b
▶ the only solution of Ax = 0 is x = 0
▶ the R.R.E.F. of A is the identity matrix I
▶ A is a product of elementary matrices



Linear Combinations

Recall

Definition
Let v1, . . . , vk be vectors in Rn. A linear combination of the
vectors v1, . . . , vk is an expression of the form

c1v1 + c2v2 + · · ·+ ckvk , c1, . . . , ck ∈ R



The span of a set of vectors

Definition
Let v1, . . . , vk be vectors in Rn. The span of v1, . . . , vk is the set
of all possible linear combinations of the vectors v1, . . . , vk :

span (v1, . . . , vk) ≡ {c1v1 + c2v2 + · · ·+ ckvk | c1, . . . , ck ∈ R}

Remark: Recall that a hyperplane in Rn, is a set of the form

H = {p0 + s1v1 + s2v2 + · · ·+ skvk | s1, . . . , sk ∈ R}

So span (v1, . . . , vk) is a hyperplane for which p0 = 0 (the zero
vector).
Thus, the span of a set of vectors is always a hyperplane that
passes through the origin.



Closure under an operation

The span of a set of vectors is the first example of what we will
call a subspace of Rn.
However, to define subspaces in general, we need a couple more
preliminary concepts.

Definition
A operation on a set S is just a procedure or function that can be
applied to elements of that set.
A set S is closed under an operation f if f (s) is an element of S
for each s ∈ S .



Example

The vector space Rn is a set that is closed under both scalar
multiplication and vector addition
This is because after applying scalar multiplication or vector
addition to elements of Rn, you just get back elements of Rn:

λ ∈ R and v ∈Rn ⇒ λv ∈Rn

v1, v2 ∈ Rn ⇒ v1 + v2 ∈ Rn



Closure Under Scalar Multiplication and Vector Addition

Formalizing the notions of closure under scalar multiplication and
vector addition:

Definition
A subset S ⊆ Rn is closed under scalar multiplication if

λ ∈ R and v ∈ S =⇒ λv ∈ S

A subset S ⊆ Rn is closed under vector addition if

v1, v2 ∈ S =⇒ (v1 + v2) ∈ S



Subspaces

Definition
A subspace of Rn is a subset S of Rn that is closed under both
scalar multiplication and vector addition.

As the nomenclature suggests, subspaces can be thought of as
smaller vector spaces sitting inside a larger vector space (like a
subset is a smaller set sitting inside a larger set).

Howevever, subsets of Rn are usually not closed under scalar
multiplication and vector addition.



Example: the unit circle

Let
S1 =

{
[x , y ] ∈ R2 | x2 + y2 = 1

}
This set is not closed under scalar multiplication. E.g.,

λ = 2 ∈ R , v = [1, 0] ∈ S1 ⇒ λv = [2, 0] /∈ S1 since 22+02 ̸= 1

So S1 is not closed under vector addition either. E.g.,

[1, 0] , [0, 1] ∈ S1 ⇒ [1, 0]+[0, 1] = [1, 1] /∈ S1 since 12+12 ̸= 1

Since the unit circle S1 is not closed under scalar multiplication
and vector addition, S1 is not a subspace.



Example: the set T =
{
[x , y ] ∈ R2 | x , y ∈ Z

}

The subset T is closed under vector addition:
If n1, n2,m1,m2 ∈ Z, then [n1, n2] , [m1,m2] ∈ T . And then

v1 + v2 = [n1 +m1, n2 +m2]

Since the sum of two integers is always another integer, both
components of the vector sum v1 + v2 are integers.
Thus, v1 + v1 is always in T ; and so, T is closed under vector
addition.



Example: the set T =
{
[x , y ] ∈ R2 | x , y ∈ Z

}
, Cont’d

However, the set T is not closed under scalar multiplication.
To see this, choose λ =

√
2 ∈ R and let v = [1, 0] ∈ T . Then,

λv =
√
2 [1, 0] =

[√
2, 0

]
/∈ T since

√
2 is not an integer

Since λv /∈ T , T is not closed under scalar multiplication.

Since T is not closed under both scalar multiplication and vector
addition, T is not a subspace.



Example: A hyperplane in Rn

Consider a hyperplane in Rn

H = {p0 + s1w1 + · · ·+ skwk | s1, . . . , sk ∈ R}

If H does not contain the zero vector 0 it is not a subspace.
To see this, suppose v ∈ H, and we choose λ = 0. Then

λv = 0v = 0 /∈ H

and so H is not closed under scalar multiplication and so H is not
a subspace.



Example: the span of a set of vectors

Consider

S = span (w1, . . . ,wk) = {s1w1 + · · ·+ skwk | s1, . . . , sk ∈ R}

Then if λ ∈ R and v = s1w1 + · · ·+ skwk ∈ S , then

λv = λ (s1w1 + · · ·+ skwk) = (λs1)w1 + · · ·+ (λsk)wk

Since each of the scalar factors (λsi ) on the right is a real number,
λv is another element of S (for λv is just another linear
combination of the vectors w1, . . . ,wk).

So the span of a set of vectors is closed under scalar multiplication.



Example: the span of a set of vectors, Cont’d

S = span (w1, . . . ,wk) = {s1w1 + · · ·+ skwk | s1, . . . , sk ∈ R}

Now choose two vectors in S :

v1 = s1w1 + · · ·+ skwk

v2 = t1w1 + · · ·+ tkwk

Then
v1 + v2 = (s1 + t1)w1 + · · ·+ (sk + tk)wk

Since the scalar factors (si + ti ) on the right are all real numbers,
v1 + v2 belongs to S . Hence, S is closed under vector addition.

Since S is closed under both scalar multiplication and vector
addition, it is a subspace of Rn.



The Solution Set of a Linear System

Let S be the solution set of an n ×m linear system:

S = {y ∈ Rm | Ay = b}

S is not closed under scalar multiplication: If y is a solution, then

A (λy) = λAy = λb ̸= b

so λy is not a solution

S is not closed under vector addition: If y and w are solutions, then

A (y +w) = Ay + Aw = b+ b = 2b ̸= b

so y +w is not a solution.

Since the solution set is not closed under both scalar multiplication
and vector addition, the solution set is a not a subspace of the
vector space of variable values Rm.



The Solution Set of a Homogeneous Linear System

A homogeneous linear system is a linear system of the form
Ax = 0 (where the right hand side is the zero vector).
Let S be the solution set of an n ×m homogeneous linear system.

S is closed under scalar multiplication: If y is a solution, then

A (λy) = λAy = λ0 = 0

so λy is also a solution

S is closed under vector addition: If y and w are solutions, then

A (y +w) = Ay + Aw = 0+ 0 = 0

so y +w is a solution.

Since the solution set is closed under both scalar multiplication and
vector addition, the solution set is a subspace (of the vector space
of variable values Rm).



Remarks

▶ Hyperplanes H = {p0 + s1w1 + · · ·+ skwk | s1, . . . , sk ∈ R}
are not subspaces in general, but

▶ Spanning sets
span (w1, . . . ,wk) = {s1w1 + · · ·+ skwk | s1, . . . , sk ∈ R} are
always subspaces

▶ Solution sets of linear systems Ax = b are not subspaces in
general, but

▶ Solution sets of homogeneous linear systems Ax = 0 are
always subspaces.



In fact,

▶ Solution sets of linear systems Ax = b correspond to
hyperplanes and are not subspaces in general.

▶ Solution sets of homogeneous linear systems Ax = 0
correspond to spanning sets and are always subspaces


