Lecture 12 : Subspaces

Math 3013 Oklahoma State University

February 11, 2022

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Agenda

- Quick Overview of 1st Exam Topics
- The Span of a Set of Vectors
- Subspaces

Quick Overview of Material on First Midterm

- **I.** Vectors in \mathbb{R}^n
 - A. Vector Addition $+ : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$
 - B. Scalar Multiplication $* : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$
 - C. Linear Combinations of Vectors : e.g. $\alpha \mathbf{v} + \beta \mathbf{u} + \cdots$
 - D. Dot Product $\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$
- II. Geometry of Vector Spaces
 - A. Points, Lines, Planes and Hyperplanes

$$\mathcal{H} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = \mathbf{p}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 \cdots t_k \mathbf{v}_k; t_1, t_2, \dots, t_k \in \mathbb{R} \}$$

 B. Solutions Sets of Linear Equations are (intersections of) Hyperplanes

$$a_{1}x_{1} + \dots + a_{m-1}x_{m-1} + a_{m}x_{m} = b$$

$$\Rightarrow \quad \mathbf{x} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \frac{b}{a_{m}} \end{bmatrix} + x_{1} \begin{bmatrix} 1 \\ \vdots \\ 0 \\ -\frac{a_{1}}{a_{m}} \end{bmatrix} + \dots + x_{m-1} \begin{bmatrix} 0 \\ \vdots \\ 1 \\ -\frac{a_{m-1}}{a_{m}} \end{bmatrix}$$

- III. Matrices and Matrix Algebra
 - A. Matrices and Linear Systems : Augmented Matrices

$$\begin{array}{c|c} a_{11}x_1 + \dots + a_{1m}x_m = b_1 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + \dots + a_{nm}x_m = b_n \end{array} \end{array} \right\} \Longleftrightarrow \left[\begin{array}{c|c} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{array} \right]$$

B. Matrix Multiplication

$$\left(\mathbf{AB}\right)_{ij} = Row_i\left(\mathbf{A}\right) \cdot Col_j\left(\mathbf{B}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

C. Matrix Addition and Scalar MultiplicationD. The Transpose of a Matrix

IV. Solving Systems of Linear Equations

- A. Elementary Operations on Systems of Equations
- B. Elementary Row Operations

(i)
$$R_i \leftrightarrow R_j$$

(ii) $R_i \rightarrow \lambda R_i$, $\lambda \neq 0$
(iii) $R_i \rightarrow R_i + \lambda R_j$
C. Row-Echelon Form
$$\begin{bmatrix}
\frac{*}{0} & * & \cdots & * & * \\
0 & 0 & \underline{*} & \cdots & * \\
\vdots & & & \vdots \\
0 & \cdots & 0 & \underline{*} & *
\end{bmatrix}$$
D. Reduced Row-Echelon Form
$$\begin{bmatrix}
\frac{1}{0} & * & 0 & 0 & * \\
0 & 0 & \underline{1} & 0 & * \\
\vdots & & & \vdots \\
0 & \cdots & 0 & \underline{1} & *
\end{bmatrix}$$

- E. Solving Linear Systems
 - convert to augmented matrix [A | b]
 - row reduce to R.E.F. (pivots occur in down and to the right)
 - row reduce further to R.R.E.F. (R.E.F. with pivots = 1 and 0's above and below pivots)
 - identify fixed and free variables in solution
 - fixed variables \leftrightarrow columns of R.E.F. with pivots
 - free variables \leftrightarrow columns of R.E.F. without pivots
 - write down solution set as a hyperplane
 - (i) R.R.E.F. \longrightarrow equations expressing fixed variables in terms of free variables
 - (ii) Use equations from (ii) to express solution vectors in terms of the free variables
 - (iii) Expand the solution vector in terms of the free parameters

N.B. There is no solution whenever you have whose only non-zero entry is in the last column of the augmented matrix.

- V. Inverses of Square Matrices
 - A. Definition and Properties of Matrix Inverses
 - B. Elementary Matrices
 - C. Calculating Matrix Inverses
 - ► form adjoined matrix [A | I]
 - ▶ row reduce [**A** | **I**] to R.R.E.F.
 - if L.H.S. of R.R.E.F matrix is the identity matrix I, then the R.H.S. is A⁻¹

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

if not, A has no inverse

- D. Fundamental Theorem of Matrix inverses and $n \times n$ linear systems
 - A has an inverse.
 - Ax = b has a unique solution for every b
 - the only solution of Ax = 0 is x = 0
 - the R.R.E.F. of A is the identity matrix I
 - A is a product of elementary matrices

Linear Combinations

Recall

Definition

Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be vectors in \mathbb{R}^n . A **linear combination** of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is an expression of the form

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k$$
, $c_1,\ldots,c_k\in\mathbb{R}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The span of a set of vectors

Definition

Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be vectors in \mathbb{R}^n . The **span** of $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is the set of all possible linear combinations of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$:

$$span(\mathbf{v}_1,\ldots,\mathbf{v}_k) \equiv \{c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k \mid c_1,\ldots,c_k \in \mathbb{R}\}$$

Remark: Recall that a hyperplane in \mathbb{R}^n , is a set of the form

$$\mathcal{H} = \{\mathbf{p}_0 + s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \dots + s_k \mathbf{v}_k \mid s_1, \dots, s_k \in \mathbb{R}\}$$

So $span(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ is a hyperplane for which $\mathbf{p}_0 = \mathbf{0}$ (the zero vector).

Thus, the span of a set of vectors is always a hyperplane that passes through the origin.

Closure under an operation

The span of a set of vectors is the first example of what we will call a **subspace** of \mathbb{R}^n .

However, to define subspaces in general, we need a couple more preliminary concepts.

Definition

A **operation** on a set S is just a procedure or function that can be applied to elements of that set.

A set S is **closed under an operation** f if f(s) is an element of S for each $s \in S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

The vector space \mathbb{R}^n is a set that is closed under both scalar multiplication and vector addition This is because after applying scalar multiplication or vector addition to elements of \mathbb{R}^n , you just get back elements of \mathbb{R}^n :

$$\lambda \in \mathbb{R} \text{ and } \mathbf{v} \in \mathbb{R}^n \Rightarrow \lambda \mathbf{v} \in \mathbb{R}^n$$

 $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 \in \mathbb{R}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Closure Under Scalar Multiplication and Vector Addition

Formalizing the notions of closure under scalar multiplication and vector addition:

Definition

A subset $S \subseteq \mathbb{R}^n$ is closed under scalar multiplication if

$$\lambda \in \mathbb{R} \text{ and } \mathbf{v} \in \mathbf{S} \implies \lambda \mathbf{v} \in S$$

A subset $S \subseteq \mathbb{R}^n$ is closed under vector addition if

$$\mathbf{v}_1, \mathbf{v}_2 \in S \implies (\mathbf{v}_1 + \mathbf{v}_2) \in S$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Subspaces

Definition

A **subspace** of \mathbb{R}^n is a subset *S* of \mathbb{R}^n that is closed under both scalar multiplication and vector addition.

As the nomenclature suggests, **subspaces** can be thought of as smaller vector spaces sitting inside a larger vector space (like a subset is a smaller set sitting inside a larger set).

Howevever, subsets of \mathbb{R}^n are usually not closed under scalar multiplication and vector addition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: the unit circle

Let

$$S^1 = \{[x, y] \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

This set is not closed under scalar multiplication. E.g.,

$$\lambda=2\in\mathbb{R}\;,\;\; \mathbf{v}=[1,0]\in \mathcal{S}^1 \quad\Rightarrow\quad \lambda\mathbf{v}=[2,0]\notin \mathcal{S}^1\;\text{since}\;2^2{+}0^2\neq 1$$

So S^1 is not closed under vector addition either. E.g.,

 $[1,0]\,,[0,1]\in S^1 \quad \Rightarrow \quad [1,0]+[0,1]=[1,1]\notin S^1 \text{ since } 1^2+1^2\neq 1$

Since the unit circle S^1 is not closed under scalar multiplication and vector addition, S^1 is not a subspace. Example: the set $T = \{[x, y] \in \mathbb{R}^2 \mid x, y \in \mathbb{Z}\}$

The subset T is closed under vector addition: If $n_1, n_2, m_1, m_2 \in \mathbb{Z}$, then $[n_1, n_2]$, $[m_1, m_2] \in T$. And then

$$\mathbf{v}_1 + \mathbf{v}_2 = [n_1 + m_1, n_2 + m_2]$$

Since the sum of two integers is always another integer, both components of the vector sum $\mathbf{v}_1 + \mathbf{v}_2$ are integers. Thus, $\mathbf{v}_1 + \mathbf{v}_1$ is always in T; and so, T is closed under vector addition. Example: the set $\mathcal{T} = \left\{ [x, y] \in \mathbb{R}^2 \mid x, y \in \mathbb{Z} \right\}$, Cont'd

However, the set T is not closed under scalar multiplication. To see this, choose $\lambda = \sqrt{2} \in \mathbb{R}$ and let $\mathbf{v} = [1,0] \in T$. Then,

$$\lambda \mathbf{v} = \sqrt{2} \left[1, 0 \right] = \left[\sqrt{2}, 0 \right] \notin T$$
 since $\sqrt{2}$ is not an integer

Since $\lambda \mathbf{v} \notin T$, T is not closed under scalar multiplication.

Since T is not closed under **both** scalar multiplication and vector addition, T is not a subspace.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: A hyperplane in \mathbb{R}^n

Consider a hyperplane in \mathbb{R}^n

$$\mathcal{H} = \{\mathbf{p}_0 + s_1 \mathbf{w}_1 + \dots + s_k \mathbf{w}_k \mid s_1, \dots, s_k \in \mathbb{R}\}$$

If \mathcal{H} does not contain the zero vector $\mathbf{0}$ it is not a subspace. To see this, suppose $\mathbf{v} \in \mathcal{H}$, and we choose $\lambda = 0$. Then

$$\lambda \mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0} \notin \mathcal{H}$$

and so ${\mathcal H}$ is not closed under scalar multiplication and so ${\mathcal H}$ is not a subspace.

Example: the span of a set of vectors

Consider

$$S = span\left(\mathbf{w}_1, \ldots, \mathbf{w}_k
ight) = \left\{s_1\mathbf{w}_1 + \cdots + s_k\mathbf{w}_k \mid s_1, \ldots, s_k \in \mathbb{R}
ight\}$$

Then if $\lambda \in \mathbb{R}$ and $\mathbf{v} = s_1 \mathbf{w}_1 + \cdots + s_k \mathbf{w}_k \in S$, then

$$\lambda \mathbf{v} = \lambda \left(s_1 \mathbf{w}_1 + \dots + s_k \mathbf{w}_k \right) = (\lambda s_1) \mathbf{w}_1 + \dots + (\lambda s_k) \mathbf{w}_k$$

Since each of the scalar factors (λs_i) on the right is a real number, $\lambda \mathbf{v}$ is another element of S (for $\lambda \mathbf{v}$ is just another linear combination of the vectors $\mathbf{w}_1, \ldots, \mathbf{w}_k$).

So the span of a set of vectors is closed under scalar multiplication.

Example: the span of a set of vectors, Cont'd

$$S = span(\mathbf{w}_1, \dots, \mathbf{w}_k) = \{s_1\mathbf{w}_1 + \dots + s_k\mathbf{w}_k \mid s_1, \dots, s_k \in \mathbb{R}\}$$

Now choose two vectors in S:

$$\mathbf{v}_1 = s_1 \mathbf{w}_1 + \dots + s_k \mathbf{w}_k$$
$$\mathbf{v}_2 = t_1 \mathbf{w}_1 + \dots + t_k \mathbf{w}_k$$

Then

$$\mathbf{v}_1 + \mathbf{v}_2 = (s_1 + t_1) \mathbf{w}_1 + \cdots + (s_k + t_k) \mathbf{w}_k$$

Since the scalar factors $(s_i + t_i)$ on the right are all real numbers, $\mathbf{v}_1 + \mathbf{v}_2$ belongs to S. Hence, S is closed under vector addition.

Since S is closed under both scalar multiplication and vector addition, it is a subspace of \mathbb{R}^n .

The Solution Set of a Linear System

Let S be the solution set of an $n \times m$ linear system:

$$S = \{\mathbf{y} \in \mathbb{R}^m \mid \mathbf{A}\mathbf{y} = \mathbf{b}\}$$

S is not closed under scalar multiplication: If **y** is a solution, then

$$\mathbf{A}(\lambda \mathbf{y}) = \lambda \mathbf{A} \mathbf{y} = \lambda \mathbf{b} \neq \mathbf{b}$$

so $\lambda \mathbf{y}$ is not a solution

S is not closed under vector addition: If **y** and **w** are solutions, then

$$A(y + w) = Ay + Aw = b + b = 2b \neq b$$

so $\mathbf{y} + \mathbf{w}$ is not a solution.

Since the solution set is not closed under both scalar multiplication and vector addition, the solution set is a not a subspace of the vector space of variable values \mathbb{R}^m .

The Solution Set of a Homogeneous Linear System

A homogeneous linear system is a linear system of the form Ax = 0 (where the right hand side is the zero vector). Let S be the solution set of an $n \times m$ homogeneous linear system.

S is closed under scalar multiplication: If \mathbf{y} is a solution, then

$$oldsymbol{\mathsf{A}}\left(\lambda\mathbf{y}
ight)=\lambdaoldsymbol{\mathsf{A}}\mathbf{y}=\lambdaoldsymbol{0}=oldsymbol{0}$$

so $\lambda \mathbf{y}$ is also a solution

S is closed under vector addition: If \mathbf{y} and \mathbf{w} are solutions, then

$$A(y+w) = Ay + Aw = 0 + 0 = 0$$

so $\mathbf{y} + \mathbf{w}$ is a solution.

Since the solution set is closed under both scalar multiplication and vector addition, the solution set is a subspace (of the vector space of variable values \mathbb{R}^m).

Remarks

- ▶ Hyperplanes $\mathcal{H} = \{\mathbf{p}_0 + s_1 \mathbf{w}_1 + \dots + s_k \mathbf{w}_k \mid s_1, \dots, s_k \in \mathbb{R}\}$ are not subspaces in general, but
- Spanning sets span (w₁,...,w_k) = {s₁w₁ + ··· + s_kw_k | s₁,...,s_k ∈ ℝ} are always subspaces
- Solution sets of linear systems Ax = b are not subspaces in general, but

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solution sets of homogeneous linear systems Ax = 0 are always subspaces.

In fact,

- Solution sets of linear systems Ax = b correspond to hyperplanes and are not subspaces in general.
- Solution sets of homogeneous linear systems Ax = 0 correspond to spanning sets and are always subspaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00