Lecture 13 : Two Basic Prototypes for Subspaces

Math 3013 Oklahoma State University

February 14, 2022

Agenda

- Subspaces
- Counter-Examples of Subspaces
- Two Basic Prototypes for Subspaces
 - $\blacktriangleright span(\mathbf{w}_1,\ldots,\mathbf{w}_k) \equiv \{t_1\mathbf{w}_1+\cdots+\mathbf{w}_k \mid t_1,\ldots,t_k \in \mathbb{R}\}$
 - The Solution Set of a Homogeneous Linear System Ax = 0

Closure Under Scalar Multiplication and Vector Addition

Definition

A subset $S \subseteq \mathbb{R}^n$ is closed under scalar multiplication if

$$\lambda \in \mathbb{R} \text{ and } \mathbf{v} \in S \implies (\lambda \mathbf{v}) \in S$$

A subset $S \subseteq \mathbb{R}^n$ is closed under vector addition if

$$\mathbf{v}_1, \mathbf{v}_2 \in S \implies (\mathbf{v}_1 + \mathbf{v}_2) \in S$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Subspaces

Definition

A **subspace** of \mathbb{R}^n is a subset *S* of \mathbb{R}^n that is closed under both scalar multiplication and vector addition:

$$egin{array}{ll} \lambda \in \mathbb{R} ext{ and } \mathbf{v} \in S & \Longrightarrow & (\lambda \mathbf{v}) \in S \ \mathbf{v}_1, \mathbf{v}_2 \in S & \Longrightarrow & (\mathbf{v}_1 + \mathbf{v}_2) \in S \end{array}$$

As the nomenclature suggests, **subspaces** can be thought of as vector spaces sitting inside a larger vector space (like a subset is a smaller set sitting inside a larger set).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: the unit circle S^1

Let

$$S^1 = \{ [x, y] \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}$$

This set is not closed under scalar multiplication. E.g.,

$$\lambda = 2 \in \mathbb{R} , \ \mathbf{v} = [1,0] \in S^1 \quad \Rightarrow \quad \lambda \mathbf{v} = [2,0] \notin S^1$$

since $2^2 + 0^2 \neq 1$ S^1 is **not closed** under vector addition either. E.g.,

$$\left[1,0
ight], \left[0,1
ight] \in S^{1} \quad \Rightarrow \quad \left[1,0
ight] + \left[0,1
ight] = \left[1,1
ight] \notin S^{1}$$

since $1^2+1^2\neq 1$

Since the unit circle is not closed under scalar multiplication and vector addition, S_1 is not a subspace.

Example: the set $T = \left\{ [x, y] \in \mathbb{R}^2 \mid x, y \in \mathbb{Z} \right\}$

The subset T is closed under vector addition: If $n_1, n_2, m_1, m_2 \in \mathbb{Z}$, then $[n_1, n_2]$, $[m_1, m_2] \in T$. then

$$\mathbf{v}_1 + \mathbf{v}_2 = [n_1 + m_1, n_2 + m_2]$$

Since the sum of two integers is always another integer, both components of the vector sum $\mathbf{v}_1 + \mathbf{v}_2$ are integers. Thus, $\mathbf{v}_1 + \mathbf{v}_1$ is always in T; and so, T is closed under vector addition.

Example: the set $\mathcal{T} = \left\{ [x, y] \in \mathbb{R}^2 \mid x, y \in \mathbb{Z} \right\}$, Cont'd

However, the set T is not closed under scalar multiplication. To see this, choose $\lambda = \sqrt{2} \in \mathbb{R}$ and let $\mathbf{v} = [1,0] \in T$. Then,

$$\lambda \mathbf{v} = \sqrt{2} \left[1, 0 \right] = \left[\sqrt{2}, 0 \right] \notin T$$
 since $\sqrt{2}$ is not an integer

Since $\lambda \mathbf{v} \notin T$, T is not closed under scalar multiplication.

Since T is not closed under **both** scalar multiplication and vector addition, T is not a subspace.

Example: A hyperplane in \mathbb{R}^n

Consider a hyperplane in \mathbb{R}^n

$$\mathcal{H} = \{\mathbf{p}_0 + s_1 \mathbf{w}_1 + \dots + s_k \mathbf{w}_k \mid s_1, \dots, s_k \in \mathbb{R}\}$$

If \mathcal{H} does not contain the zero vector **0** it is not a subspace. To see this, suppose $\mathbf{v} \in \mathcal{H}$, and we choose $\lambda = 0$. Then

$$\lambda \mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0} \notin \mathcal{H}$$

and so ${\mathcal H}$ is not closed under scalar multiplication and so ${\mathcal H}$ is not a subspace.

The preceding counter-example generalizes as follows:

Lemma

Let S be a subset of \mathbb{R}^n . If $\mathbf{0} \notin S$, then S is not closed under scalar multiplication and hence S is not a subspace.

(scalar multiplication by 0 would always yield $\mathbf{0}$ and so would take you out of a set S that doesn't contain $\mathbf{0}$)

The Span of a Set of Vectors

Recall

Definition

Let $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ be a set of vectors in \mathbb{R}^n . The **span** of $\mathbf{w}_1, \ldots, \mathbf{w}_k$ is the set of all linear combinations of $\mathbf{w}_1, \ldots, \mathbf{w}_k$:

$$span(\mathbf{w}_1,\ldots,\mathbf{w}_k)=\{s_1\mathbf{w}_1+\cdots+s_k\mathbf{w}_k\mid s_1,\ldots,s_k\in\mathbb{R}\}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

First Basic Prototype of a Subspace: the span of a set of vectors

Let

$$S = span(\mathbf{w}_1, \dots, \mathbf{w}_k) \equiv \{s_1\mathbf{w}_1 + \dots + s_k\mathbf{w}_k \mid s_1, \dots, s_k \in \mathbb{R}\}$$

Then if $\lambda \in \mathbb{R}$ and $\mathbf{v} = s_1 \mathbf{w}_1 + \cdots + s_k \mathbf{w}_k \in S$, then

$$\lambda \mathbf{v} = \lambda (s_1 \mathbf{w}_1 + \dots + s_k \mathbf{w}_k) = (\lambda s_1) \mathbf{w}_1 + \dots + (\lambda s_k) \mathbf{w}_k$$

Since each of the scalar factors (λs_i) on the right is a real number, $\lambda \mathbf{v}$ is another element of S (for $\lambda \mathbf{v}$ is just another linear combination of the vectors $\mathbf{w}_1, \ldots, \mathbf{w}_k$).

So the span of a set of vectors is always closed under scalar multiplication.

Example: the span of a set of vectors, Cont'd

$$S = span(\mathbf{w}_1, \dots, \mathbf{w}_k) = \{s_1\mathbf{w}_1 + \dots + s_k\mathbf{w}_k \mid s_1, \dots, s_k \in \mathbb{R}\}$$

Now choose two vectors in S:

$$\mathbf{v}_1 = s_1 \mathbf{w}_1 + \dots + s_k \mathbf{w}_k$$
$$\mathbf{v}_2 = t_1 \mathbf{w}_1 + \dots + t_k \mathbf{w}_k$$

Then

$$\mathbf{v}_1 + \mathbf{v}_2 = (s_1 + t_1) \mathbf{w}_1 + \dots + (s_k + t_k) \mathbf{w}_k$$

Since the scalar factors $(s_i + t_i)$ on the right are all real numbers, $\mathbf{v}_1 + \mathbf{v}_2$ belongs to S. Hence, $S = span(\mathbf{w}_1, \dots, \mathbf{w}_k)$ is closed under vector addition. Example: the span of a set of vectors, Cont'd

 $span(\mathbf{w}_1, \ldots, \mathbf{w}_k)$ is thus closed under both scalar multiplication and vector addition,

If $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\} \subset \mathbb{R}^n$, then

 $span(\mathbf{w}_1,\ldots,\mathbf{w}_k) \equiv \{t_1\mathbf{w}_1+\cdots+t_k\mathbf{w}_k \mid t_1,\ldots,t_k \in \mathbb{R}\}$

is always a subspace of \mathbb{R}^n .

Solution Set of a Linear System

Let S be the solution set of an $n \times m$ linear system:

$$S = \{\mathbf{y} \in \mathbb{R}^m \mid \mathbf{A}\mathbf{y} = \mathbf{b}\}$$

S is not closed under scalar multiplication: If **y** is a solution, then

$$\mathbf{A}\left(\lambda\mathbf{y}
ight)=\lambda\mathbf{A}\mathbf{y}=\lambda\mathbf{b}
eq\mathbf{b}$$

so $\lambda \mathbf{y}$ is not a solution

S is not closed under vector addition: If **y** and **w** are solutions, then

$$A(y + w) = Ay + Aw = b + b = 2b \neq b$$

so $\mathbf{y} + \mathbf{w}$ is not a solution.

Since the solution set is not automatically closed under either scalar multiplication and vector addition,

The solution set of a linear system is a not, in general, a subspace of the vector space of variable values \mathbb{R}^m_{-}

The Solution Set of a Homogeneous Linear System

A homogeneous linear system is a linear system of the form Ax = 0 (where the right hand side is the zero vector).

Let S be the solution set of an $n \times m$ homogeneous linear system.

S is closed under scalar multiplication: If \mathbf{y} is a solution, then

$$\mathbf{A}(\lambda \mathbf{y}) = \lambda \mathbf{A} \mathbf{y} = \lambda \mathbf{0} = \mathbf{0}$$

so $\lambda \mathbf{y}$ is also a solution

S is closed under vector addition: If \mathbf{y} and \mathbf{w} are solutions, then

$$A(y+w) = Ay + Aw = 0 + 0 = 0$$

so $\mathbf{y} + \mathbf{w}$ is a solution.

Since the solution set is closed under both scalar multiplication and vector addition, the solution set of a homogeneous linear system Ax = 0 is a subspace of the vector space of variable values \mathbb{R}^m .

Remarks

- ▶ Hyperplanes $\mathcal{H} = \{\mathbf{p}_0 + s_1 \mathbf{w}_1 + \cdots + s_k \mathbf{w}_k \mid s_1, \ldots, s_k \in \mathbb{R}\}$ are not subspaces in general, but
- Spanning sets $span(\mathbf{w}_1, \dots, \mathbf{w}_k) = \{s_1\mathbf{w}_1 + \dots + s_k\mathbf{w}_k \mid s_1, \dots, s_k \in \mathbb{R}\}$ are subspaces
- Similarly,
 - Solution sets of linear systems Ax = b are not subspaces in general, but
 - Solution sets of homogeneous linear systems Ax = 0 are subspaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary So Far

Recall

Definition

A subset S of a vector space \mathbb{R}^n is a **subspace** if:

$$\blacktriangleright \ \mathbf{v} \in S \text{ and } \lambda \in \mathbb{R} \implies \lambda \mathbf{v} \in S$$

 \blacktriangleright $\mathbf{v}_1, \mathbf{v}_2 \in S \implies \mathbf{v}_1 + \mathbf{v}_2 \in S$

Two basic prototypes for subspaces:

the span of a set of vectors: e.g.,

$$S = span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$$

$$\equiv \{c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}$$

• the solution set of a homogeneous linear system Ax = 0We'll next focus on the first prototype.

Nomenclature

lf

$$S = span(\mathbf{v}_1, \ldots, \mathbf{v}_k)$$

we say that S is **the subspace generated** by the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$.

We also say that the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are a **set of generators** for *S*.

A key concern for us today is that **the vectors that generate a subspace are far from unique**.

In fact, even the number of generators is not unique for a given subspace.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finding good coordinates for the points of a subspace

Since a subspace is (generally) a lower dimensional hyperplane inside a higher dimensional vector space \mathbb{R}^n , the usual coordinates for \mathbb{R}^n are not really suitable coordinates for vectors in a subspace. Let's begin with an example:

Example 1.

Consider

$$S = span\left(\left[\begin{array}{c} 1\\1 \end{array} \right], \left[\begin{array}{c} 1\\-1 \end{array} \right], \left[\begin{array}{c} 0\\1 \end{array} \right] \right)$$

For each choice of numbers c_1, c_2, c_3 ,

$$\mathbf{v}_{c_1,c_2,c_3} = c_1 \begin{bmatrix} 1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\-1 \end{bmatrix} + c_3 \begin{bmatrix} 0\\1 \end{bmatrix}$$

belongs to S.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Example, Cont'd

But the numbers c_1 , c_2 , c_3 do not provide good coordinates for the vectors in S since two different choices of c_1 , c_2 , c_3 can correspond to the same vector. E.g.,

$$\begin{array}{c} c_{1} = 1 \\ c_{2} = 1 \\ c_{3} = 0 \end{array} \right\} \qquad \Rightarrow \qquad (1) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (1) \begin{bmatrix} 1 \\ -1 \end{bmatrix} + (0) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
$$\begin{array}{c} c_{1} = 0 \\ c_{2} = 0 \\ c_{3} = 2 \end{array} \right\} \qquad \Rightarrow \qquad (0) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (0) \begin{bmatrix} 1 \\ -1 \end{bmatrix} + (2) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bases

Circumstances like the preceding example motivate the following definition:

Definition

A **basis** for a subspace S is a set of vectors $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ such that **every** vector $\mathbf{v} \in S$ can be expressed as

$$\mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_k \mathbf{b}_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for exactly one choice of coefficients c_1, c_2, \ldots, c_k .

Remarks:

If $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ is a basis for a subspace S, then

- $\blacktriangleright S = span(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k)$
- If two linear combinations of the vectors b₁, b₂,..., b_k yield the same vector, then the coefficients have to be the same:

$$c_1\mathbf{b}_1+\cdots+c_k\mathbf{b}_k=d_1\mathbf{b}_1+\cdots+d_k\mathbf{b}_k$$

requires

$$c_1 = d_1 \ , \ c_2 = d_2 \ , \ \dots \ , c_k = d_k$$

Thus, to each vector in S there corresponds a unique list of numbers [c₁,..., c_k]. These numbers provide suitable (i.e., unique) coordinates for each vector of S.

The Utility of Bases

- If $B = \{\mathbf{w}_1, \dots, \mathbf{w}\} k\}$ is a basis for a subspace $S \subset \mathbb{R}^n$,
 - Each $\mathbf{v} \in S$ corresponds to a unique ordered list of k numbers
 - To each element \mathbb{R}^k corresponds to a unique element of S.

$$\mathbf{v} \in S \implies \mathbf{v} = c_1 \mathbf{w}_1 + \dots + c_k \mathbf{w}_k \iff [c_1, \dots, c_k] \in \mathbb{R}^k$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ