Lecture 15 : Subspaces, Bases, and Linear Independence

Math 3013 Oklahoma State University

February 21, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Agenda

- Subspaces
- Coordinatization of Subspaces and Bases
- Linear Independence
- The Row Space of a Matrix

Recap

Definition

A **subspace** of \mathbb{R}^n is a subset $S \subset \mathbb{R}^n$ such that

- whenever $\mathbf{v} \in S$ and $\lambda \in \mathbb{R}$, $\lambda \mathbf{v} \in S$
- whenever $\mathbf{v}_1, \mathbf{v}_2 \in S$, $\mathbf{v}_1 + \mathbf{v}_2 \in S$

Two Fundamental Ways Subspaces Arise

The span of a set of vectors:

$$S = span(\mathbf{v}_1, \dots, \mathbf{v}_k)$$

$$\equiv \{c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k \mid c_1, \dots, c_k \in \mathbb{R}\}$$

Geometrically, this is a hyperplane that passes through the origin ${\bf 0}.$

The solution set of a homogeneous linear system Ax = 0

$$a_{11}x_1 + \dots + a_{1m}x_m = 0$$

$$\vdots$$

$$a_{n1}x_1 + \dots + a_{nm}x_m = 0$$

Problem: Finding good coordinates for the vectors lying in a subspace of \mathbb{R}^n

Basic idea: If $W = span(\mathbf{w}_1, \dots, \mathbf{w}_k)$, use coefficients of elements of W as coordinates

$$\mathbf{v} \in W \implies \mathbf{v} = c_1 \mathbf{w}_1 + \dots + c_k \mathbf{w}_k$$
$$\implies \text{ use } [c_1, \dots, c_k] \text{ as coordinates for } \mathbf{v} \text{ in } W$$

Problem: without some restrictions on the generators $\mathbf{w}_1, \ldots, \mathbf{w}_k$ such "coordinates" do not specify the vectors in W uniquely.

(Counter-)Example

Consider $S = span\left(\left[\begin{array}{c}1\\1\end{array}\right], \left[\begin{array}{c}1\\-1\end{array}\right], \left[\begin{array}{c}0\\1\end{array}\right]\right)$

For each choice of numbers c_1, c_2, c_3 ,

$$\mathbf{v}_{c_1,c_2,c_3} = c_1 \begin{bmatrix} 1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\-1 \end{bmatrix} + c_3 \begin{bmatrix} 0\\1 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

belongs to S.

Example, Cont'd

But the numbers c_1 , c_2 , c_3 do not provide good coordinates for the vectors in S since two different choices of c_1 , c_2 , c_3 can correspond to the same vector. E.g.,

$$\begin{array}{c} c_{1} = 1 \\ c_{2} = 1 \\ c_{3} = 0 \end{array} \right\} \qquad \Rightarrow \qquad (1) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (1) \begin{bmatrix} 1 \\ -1 \end{bmatrix} + (0) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
$$\begin{array}{c} c_{1} = 0 \\ c_{2} = 0 \\ c_{3} = 2 \end{array} \right\} \qquad \Rightarrow \qquad (0) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (0) \begin{bmatrix} 1 \\ -1 \end{bmatrix} + (2) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bases

Defining our way out of the problem:

Definition

A basis for a subspace S is a set of vectors $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ such that every vector $\mathbf{v} \in S$ can be uniquely expressed as

$$\mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_k \mathbf{b}_k$$

(i.e., the above equation is true for exactly one choice of coefficients c_1, c_2, \ldots, c_k)

Thus, an element $\mathbf{v} = c_1 \mathbf{b}_1 + \cdots + c_k \mathbf{b}_k \in S$ is uniquely identified by its "coordinate vector" $[c_1, \ldots, c_k]$ if and only if $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$ is a basis for S.

Identifying Bases for Subspaces

Definition

A set of vectors $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ is **linearly independent** if the only solution of

$$x_1\mathbf{w}_1+\cdots+x_k\mathbf{w}_k=\mathbf{0}$$

is

$$x_1 = 0 \ , \ x_2 = 0 \ , \ \dots \ , \ x_k = 0$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Linear Independence and Bases

Theorem

Suppose $W = span(\mathbf{w}_1, \ldots, \mathbf{w}_k)$. Then $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is a basis for W if and only if the vectors $\mathbf{w}_1, \ldots, \mathbf{w}_k$ are linearly independent. *Proof.*

 \implies : To show : If $B = {\mathbf{w}_1, \dots, \mathbf{w}_k}$ is a basis for W, then ${\mathbf{w}_1, \dots, \mathbf{w}_k}$ are linearly independent.

Since *B* is a basis for *W*, every vector in *W* has a unique expression as a linear combination of $\mathbf{w}_1, \ldots, \mathbf{w}_k$. In particular, since $\mathbf{0} \in W$,

$$\mathbf{0}=c_1\mathbf{w}_1+\cdots+c_k\mathbf{w}_k$$

for exactly one choice of coefficients c_1, \ldots, c_k . But clearly, the choice $c_1 = 0, c_2 = 0, \ldots, c_k = 0$ works. Thus,

$$x_1\mathbf{w}_1+\cdots+x_k\mathbf{w}_k=\mathbf{0} \implies x_1=0, x_2=0,\ldots,x_k=0$$

and so $\mathbf{w}_1, \ldots, \mathbf{w}_k$ are linear independent vectors.

・ロト <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
の へ の
</p>

Proof of Theorem, Cont'd

⇐=:

To show : If $\mathbf{w}_1, \ldots, \mathbf{w}_k$ are linearly independent, then $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is a basis for $W = span(\mathbf{w}_1, \ldots, \mathbf{w}_k)$. Since $W = span(\mathbf{w}_1, \ldots, \mathbf{w}_k)$, every vector $\mathbf{v} \in W$ is a linear combination of $\mathbf{w}_1, \ldots, \mathbf{w}_k$. We need to show that there is only one way of writing a given $\mathbf{v} \in W$ as a linear combination of $\mathbf{w}_1, \ldots, \mathbf{w}_k$. Suppose there were two ways:

$$\mathbf{v} = c_1 \mathbf{w}_1 + \dots + c_k \mathbf{w}_k$$
$$\mathbf{v} = d_1 \mathbf{w}_1 + \dots + d_k \mathbf{w}_k$$

Subtracting the second equation from the first yields

$$\mathbf{0} = (c_1 - d_1) \mathbf{w}_1 + \dots + (c_k - d_k) \mathbf{w}_k \tag{(*)}$$

Since the vectors $\mathbf{w}_1, \ldots, \mathbf{w}_k$ are linearly independent,

$$\mathbf{0} = x_1 \mathbf{w}_1 + \ldots + x_k \mathbf{w}_k \quad \Longrightarrow \quad x_1 = 0, \ldots, x_k = 0$$

Thus, (*) requires

$$c_1 - d_1 = 0, \dots, c_k - d_k = 0 \implies c_1 = d_1, \dots, c_k = d_k \ge 2$$

Upshot:

To find a basis for a subspace W, we need to find a set of linearly independent vectors that generate W.

Put another way,

 $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$ is a basis for W if and only if

(i)
$$W = span(\mathbf{b}_1, \dots, \mathbf{b}_k)$$

(ii) $\mathbf{0} = c_1\mathbf{b}_1 + \dots + c_k\mathbf{b}_k \iff c_1 = 0, \dots, c_k = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nomenclature

Whenever one has an equation of the form

$$c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k = \mathbf{0} \tag{1}$$

the solution $c_1 = 0, \ldots, c_k = 0$ of (1) is called the **trivial solution** of (1).

If there are other (non-trivial) solutions of (1), then (1) is called a **dependence relation**.

A set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are **linearly dependent** if there exists a dependence relation for them.

Here is tale-tell sign of a set of linearly independent vectors.

Suppose each of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ has non-zero component that cannot be can not be cancelled out by a linear combination of the other vectors. Then the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent.

Example: Consider the vectors $\mathbf{v}_1 = \{[1, 1, 0, 1], \mathbf{v}_2 = [0, 1, 1, 0]\}$. A dependence relation between these vectors would be an equation of the form

$$[0,0,0,0] = x_1[1,1,0,1] + x_2[0,1,1,0] = [x_1,x_1+x_2,x_2,x_1]$$

We must have $x_1 = 0$ because the first component of \mathbf{v}_1 cannot be cancelled by a scalar multiple of \mathbf{v}_2 and we must have $x_2 = 0$ since the third component of \mathbf{v}_2 cannot be cancelled by a scalar multiple of \mathbf{v}_1 .

The Row Vectors of a Matrix in Row Echelon Form

The preceding observation implies

Theorem

Suppose **A** is an $n \times m$ matrix in Row Echelon Form. Then the non-zero row vectors of **A** are linearly independent.

Proof. If let $Row_1(\mathbf{A}), \ldots, Row_k(\mathbf{A})$ be the non-zero rows of \mathbf{A} . Consider

$$x_1 Row_1 \left(\mathbf{A} \right) + x_2 Row_2 \left(\mathbf{A} \right) + \dots + x_k Row_k \left(\mathbf{A} \right) = \mathbf{0} \qquad (*)$$

Since **A** is in R.E.F., below the pivot in the first row we'll have nothing but 0's; and so we can not cancel out the pivot component of Row_1 (**A**) using a linear combinations with the other row vectors. Hence, we cannot have (*) without $x_1 = 0$. But once the contribution of Row_1 (**A**) has been removed from (*), the same argument implies that

$$x_2 Row_2(\mathbf{A}) + \cdots + x_k Row_k(\mathbf{A}) = \mathbf{0} \implies x_2 = \mathbf{0}$$

(since there is no way to cancel the pivot component of $R_2(A)$)

Sac

The Row Vectors of a Matrix in R.E.F., Cont'd

Thus,

$$\mathbf{0} = x_1 Row_1(\mathbf{A}) + x_2 Row_2(\mathbf{A}) + \dots + x_k Row_k(\mathbf{A})$$

$$\implies x_1 = 0$$

$$\mathbf{0} = x_2 Row_2(\mathbf{A}) + \dots + x_k Row_k(\mathbf{A}) \implies x_2 = 0$$

$$\vdots$$

$$\mathbf{0} = x_k Row_k(\mathbf{A}) \implies x_k = 0$$

Thus, (*) can only hold when $x_1 = 0, ..., x_k = 0$. Hence, the non-zero row vectors of **A** are linearly independent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Finding a Basis for $RowSp(\mathbf{A})$

Definition

The **Row Space** of an $n \times m$ matrix is the subspace of \mathbb{R}^m generated by the row vectors of **A**.

$$RowSp(\mathbf{A}) = \{c_1Row_1(\mathbf{A}) + \dots + x_nRow_n(\mathbf{A}) \mid x_1, \dots, x_n \in \mathbb{R}\}$$

Recall

Criteria for a Basis: $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ is a basis for a subspace S if

$$\blacktriangleright S = span(\mathbf{b}_1, \dots, \mathbf{b}_k)$$

• $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$ are linearly independent.

Corollary

If a matrix **A** is in R.E.F., its non-zero row vectors provide a basis for RowSp(**A**).

What about Matrices that are not in R.E.F.?

Lemma

Suppose \mathcal{R} is an elementary row operation. Then

 $RowSp(\mathcal{R}(\mathbf{A})) = RowSp(\mathbf{A})$

Corollary

Suppose **A** is an $n \times m$ matrix and let R.E.F. (**A**) be its row echelon form. Then the non-zero rows of R.E.F. (**A**) form a basis for RowSp (**A**).

Finding a basis for $W = span(\mathbf{w}_1, \dots, \mathbf{w}_k)$ when $\mathbf{w}_1, \dots, \mathbf{w}_k$ are not linearly independent

Procedure:

- Write the vectors w₁,..., w_k as the rows of a matrix A
- Row reduce A to a matrix A' in R.E.F.
- The non-zero rows of A' will be a basis for W = span (w₁,..., w_k)

This works because

- Elementary row operations do not change the row space of a matrix
- The non-zero rows of matrix in R.E.F. are linearly independent and generate its row space.

Example

Consider

$$W = span\left(\left[1, 0, 1, 1
ight], \left[1, 1, -1, 0
ight], \left[0, -1, 2, 1
ight]
ight)$$

Find a basis for W.

Form a matrix A using the given vectors as rows

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & -1 & 2 & 1 \end{bmatrix}$$

Note

$$\textit{W} = \textit{span}\left(\left[1, 0, 1, 1 \right], \left[1, 1, -1, 0 \right], \left[0, -1, 2, 1 \right] \right) = \textit{RowSp}(\textbf{A})$$

▶ Row reduce **A** to a matrix **A**′ in R.E.F.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & -1 & 2 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{A}'$$

Example, Cont'd

The non-zero rows of A' will be a basis for RowSp(A) = W. Thus, a suitable basis for W will be

$$B = \{ [1,0,1,1] , [0,1,-2,-1] \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ