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▶ Subspaces

▶ Coordinatization of Subspaces and Bases

▶ Linear Independence

▶ The Row Space of a Matrix



Recap

Definition
A subspace of Rn is a subset S ⊂ Rn such that

▶ whenever v ∈ S and λ ∈ R, λv ∈ S

▶ whenever v1, v2 ∈ S , v1 + v2 ∈ S

Two Fundamental Ways Subspaces Arise
▶ The span of a set of vectors:

S = span (v1, . . . , vk)

≡ {c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ R}

Geometrically, this is a hyperplane that passes through the
origin 0.

▶ The solution set of a homogeneous linear system Ax = 0

a11x1 + · · ·+ a1mxm = 0
...

an1x1 + · · ·+ anmxm = 0



Problem: Finding good coordinates for the vectors lying in
a subspace of Rn

Basic idea: If W = span(w1, . . . ,wk), use coefficients of elements
of W as coordinates

v ∈ W =⇒ v = c1w1 + · · ·+ ckwk

=⇒ use [c1, . . . , ck ] as coordinates for v in W

Problem: without some restrictions on the generators w1, . . . ,wk

such “coordinates” do not specify the vectors in W uniquely.



(Counter-)Example

Consider

S = span

([
1
1

]
,

[
1
−1

]
,

[
0
1

])
For each choice of numbers c1, c2, c3,

vc1,c2,c3 = c1

[
1
1

]
+ c2

[
1
−1

]
+ c3

[
0
1

]
belongs to S .



Example, Cont’d

But the numbers c1, c2, c3 do not provide good coordinates for the
vectors in S since two different choices of c1, c2, c3 can correspond
to the same vector. E.g.,

c1 = 1
c2 = 1
c3 = 0

 ⇒ (1)

[
1
1

]
+ (1)

[
1
−1

]
+ (0)

[
0
1

]
=

[
2
0

]
c1 = 0
c2 = 0
c3 = 2

 ⇒ (0)

[
1
1

]
+ (0)

[
1
−1

]
+ (2)

[
0
1

]
=

[
2
0

]



Bases

Defining our way out of the problem:

Definition
A basis for a subspace S is a set of vectors {b1,b2, . . . ,bk} such
that every vector v ∈ S can be uniquely expressed as

v = c1b1 + c2b2 + · · ·+ ckbk

(i.e., the above equation is true for exactly one choice of
coefficients c1, c2, . . . , ck)

Thus, an element v = c1b1 + · · ·+ ckbk ∈ S is uniquely identified
by its “coordinate vector” [c1, . . . , ck ] if and only if {b1, . . . ,bk}
is a basis for S .



Identifying Bases for Subspaces

Definition
A set of vectors {w1, . . . ,wk} is linearly independent if the only
solution of

x1w1 + · · ·+ xkwk = 0

is
x1 = 0 , x2 = 0 , . . . , xk = 0



Linear Independence and Bases

Theorem
Suppose W = span (w1, . . . ,wk). Then {w1, . . . ,wk} is a basis for
W if and only if the vectors w1, . . . ,wk are linearly independent.

Proof.
=⇒: To show : If B = {w1, . . . ,wk} is a basis for W , then
{w1, . . . ,wk} are linearly independent.

Since B is a basis for W , every vector in W has a unique
expression as a linear combination of w1, . . . ,wk .
In particular, since 0 ∈ W ,

0 = c1w1 + · · ·+ ckwk

for exactly one choice of coeffients c1, . . . , ck . But clearly, the
choice c1 = 0, c2 = 0, . . . , ck = 0 works.
Thus,

x1w1 + · · ·+ xkwk = 0 =⇒ x1 = 0, x2 = 0, . . . , xk = 0

and so w1, . . . ,wk are linear independent vectors.



Proof of Theorem, Cont’d
⇐=:
To show : If w1, . . . ,wk are linearly independent, then
{w1, . . . ,wk} is a basis for W = span (w1, . . . ,wk).

Since W = span (w1, . . . ,wk), every vector v ∈ W is a linear
combination of w1, . . . ,wk . We need to show that there is only
one way of writing a given v ∈ W as a linear combination of
w1, . . . ,wk . Suppose there were two ways:

v = c1w1 + · · ·+ ckwk

v = d1w1 + · · ·+ dkwk

Subtracting the second equation from the first yields

0 = (c1 − d1)w1 + · · ·+ (ck − dk)wk (*)

Since the vectors w1, . . . ,wk are linearly independent,

0 = x1w1 + . . .+ xkwk =⇒ x1 = 0, . . . , xk = 0

Thus, (*) requires

c1 − d1 = 0, . . . , ck − dk = 0 =⇒ c1 = d1, . . . , ck = dk

And so two expressions of w have to be exacly the same linear
combination.



Upshot:

To find a basis for a subspace W , we need to find a set of linearly
independent vectors that generate W .

Put another way,
{b1, . . . ,bk} is a basis for W if and only if

(i) W = span (b1, . . . ,bk)

(ii) 0 = c1b1 + · · ·+ ckbk ⇔ c1 = 0, . . . , ck = 0



Nomenclature

Whenever one has an equation of the form

c1v1 + · · ·+ ckvk = 0 (1)

the solution c1 = 0, . . . , ck = 0 of (1) is called the trivial solution
of (1).
If there are other (non-trivial) solutions of (1), then (1) is called a
dependence relation.

A set of vectors v1, . . . , vk are linearly dependent if there exists a
dependence relation for them.



Here is tale-tell sign of a set of linearly independent vectors.

Suppose each of the vectors v1, . . . , vk has non-zero component
that cannot be can not be cancelled out by a linear combination of
the other vectors. Then the vectors v1, . . . , vk are linearly
independent.

Example: Consider the vectors v1 = {[1, 1, 0, 1] , v2 = [0, 1, 1, 0]}.
A dependence relation between these vectors would be an equation
of the form

[0, 0, 0, 0] = x1[1, 1, 0, 1] + x2[0, 1, 1, 0] = [x1, x1 + x2, x2, x1]

We must have x1 = 0 because the first component of v1 cannot be
cancelled by a scalar multiple of v2 and we must have x2 = 0 since
the third component of v2 cannot be cancelled by a scalar multiple
of v1.



The Row Vectors of a Matrix in Row Echelon Form
The preceding observation implies

Theorem
Suppose A is an n ×m matrix in Row Echelon Form. Then the
non-zero row vectors of A are linearly independent.

Proof. If let Row1 (A) , . . . ,Rowk (A) be the non-zero rows of A.
Consider

x1Row1 (A) + x2Row2 (A) + · · ·+ xkRowk (A) = 0 (*)

Since A is in R.E.F., below the pivot in the first row we’ll have
nothing but 0’s; and so we can not cancel out the pivot component
of Row1 (A) using a linear combinations with the other row
vectors. Hence, we cannot have (*) without x1 = 0. But once the
contribution of Row1 (A) has been removed from (*), the same
argument implies that

x2Row2 (A) + · · ·+ xkRowk (A) = 0 =⇒ x2 = 0

(since there is no way to cancel the pivot component of R2 (A))



The Row Vectors of a Matrix in R.E.F., Cont’d

Thus,

0 = x1Row1 (A) + x2Row2 (A) + · · ·+ xkRowk (A)

=⇒ x1 = 0

=⇒ 0 = x2Row2 (A) + · · ·+ xkRowk (A) =⇒ x2 = 0
...

0 = xkRowk (A) =⇒ xk = 0

Thus, (*) can only hold when x1 = 0, . . . , xk = 0. Hence, the
non-zero row vectors of A are linearly independent. .



Finding a Basis for RowSp (A)

Definition
The Row Space of an n ×m matrix is the subspace of Rm

generated by the row vectors of A.

RowSp (A) = {c1Row1 (A) + · · ·+ xnRown (A) | x1, . . . , xn ∈ R}

Recall
Criteria for a Basis: {b1, . . . ,bk} is a basis for a subspace S if

▶ S = span (b1, . . . ,bk)

▶ {b1, . . . ,bk} are linearly independent.

Corollary

If a matrix A is in R.E.F., its non-zero row vectors provide a basis
for RowSp (A).



What about Matrices that are not in R.E.F.?

Lemma
Suppose R is an elementary row operation. Then

RowSp (R (A)) = RowSp (A)

Corollary

Suppose A is an n ×m matrix and let R.E .F . (A) be its row
echelon form. Then the non-zero rows of R.E .F . (A) form a basis
for RowSp (A).



Finding a basis for W = span (w1, . . . ,wk) when
w1, . . . ,wk are not linearly independent

Procedure:

▶ Write the vectors w1, . . . ,wk as the rows of a matrix A

▶ Row reduce A to a matrix A′ in R.E.F.

▶ The non-zero rows of A′ will be a basis for
W = span (w1, . . . ,wk)

This works because

▶ Elementary row operations do not change the row space of a
matrix

▶ The non-zero rows of matrix in R.E.F. are linearly independent
and generate its row space.



Example
Consider

W = span ([1, 0, 1, 1] , [1, 1,−1, 0] , [0,−1, 2, 1])

Find a basis for W .

▶ Form a matrix A using the given vectors as rows

A =

 1 0 1 1
1 1 −1 0
0 −1 2 1


Note

W = span ([1, 0, 1, 1] , [1, 1,−1, 0] , [0,−1, 2, 1]) = RowSp(A)

▶ Row reduce A to a matrix A′ in R.E.F.

A =

 1 0 1 1
1 1 −1 0
0 −1 2 1

 −→

 1 0 1 1
0 1 −2 −1
0 0 0 0

 = A′



Example, Cont’d

▶ The non-zero rows of A′ will be a basis for RowSp(A) = W .
Thus, a suitable basis for W will be

B = {[1, 0, 1, 1] , [0, 1,−2,−1]}


