Lecture 16 : Subspaces Attached to a Matrix and their Bases

Math 3013 Oklahoma State University

February 28, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Agenda

- Recap: Subspaces, Bases and Linear Independence
- Subspaces Attached to a Matrix
- ► Finding a Basis for *RowSp*(**A**)

Subspaces

Definition

A subset S of a vector space \mathbb{R}^n is a **subspace** if:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- whenever $\mathbf{v} \in S$ and $\lambda \in \mathbb{R}$, $\lambda \mathbf{v} \in S$
- whenever $\mathbf{v}_1, \mathbf{v}_2 \in S$, $\mathbf{v}_1 + \mathbf{v}_2 \in S$

Two Fundamental Ways Subspaces Arise

(i) The **span** of a set of vectors:

$$S = span(\mathbf{v}_1, \dots, \mathbf{v}_k)$$

$$\equiv \{c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k \mid c_1, \dots, c_k \in \mathbb{R}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(ii) The solution set of a homogeneous linear system Ax = 0

Subspaces of \mathbb{R}^n : Geometric Picture

Geometrically, subspaces are hyperplanes that pass through the origin $\boldsymbol{0} \in \mathbb{R}^n.$

Figure:
$$S = span(\mathbf{v}_1, \ldots, \mathbf{v}_k) \subset \mathbb{R}^n$$

1.3

A D > A P > A D > A D >

Bases and Coordinatization of Subspaces

Problem: How to deal with *n*-dimensional vectors living in a *k*-dimensional subspace of \mathbb{R}^n ? **Idea:** If

$$S = span(\mathbf{v}_1, \ldots, \mathbf{v}_k)$$

each $\mathbf{w} \in S$ can be expressed as

$$\mathbf{w} = c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k$$

Use $[c_1, \ldots, c_k] \in \mathbb{R}^k$ as coordinates for **w**.

However, if the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are not "linearly independent" the numbers c_1, \ldots, c_k will not be not unique (leading to multiple coordinates for a given $\mathbf{w} \in S$).

Subspaces of \mathbb{R}^n : Geometric Picture (reprise)

Figure:
$$S = span(\mathbf{v}_1, \ldots, \mathbf{v}_k) \subset \mathbb{R}^n$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In general, $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ will not be a basis for $S = span(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.

Linear Independence

Definition

A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ are said to be **linearly independent** if the only solution of

$$x_1\mathbf{v}_1+\cdots+x_k\mathbf{v}_k=\mathbf{0}$$

is

$$x_1 = 0 \ , \ x_2 = 0 \ , \ \dots \ , \ x_k = 0$$

Theorem

Let
$$B = {\mathbf{v}_1, \dots, \mathbf{v}_k}$$
 and let $S = span(\mathbf{v}_1, \dots, \mathbf{v}_k)$.
Then

B is a basis for $S \iff$ The vectors in *B* are linearly independent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Revised Definition of Basis

Original Definition: A basis for a subspace S is a set of vectors $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$ such that every vector **w** in S can be **uniquely** written as

$$\mathbf{w} = c_1 \mathbf{b}_1 + \cdots + c_k \mathbf{b}_k$$

Since the numbers c_1, \ldots, c_k are unique, they provide "good coordinates" for $\mathbf{w} \in S$. **Revised Definition**: A set of vectors $B = {\mathbf{b}_1, \ldots, \mathbf{b}_k}$ is a **basis** for a subspace $S \subset \mathbb{R}^m$ if

(i)
$$S = span(\mathbf{b}_1, ..., \mathbf{b}_k)$$

(ii) $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$ are linearly independent.

We then have

If $B = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ is a basis for a subspace $S \subset \mathbb{R}^n$, then every vector $\mathbf{w} \in S$ has a unique coordinate vector $\mathbf{w}_B \in \mathbb{R}^k$ defined by

$$\mathbf{w} = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k \quad \Longleftrightarrow \quad \mathbf{w}_B \equiv [c_1, \dots, c_k] \in \mathbb{R}^k$$

Geometric Picture: Basis Vectors in a Subspace

Figure: Basis $\{\mathbf{b}_1, \mathbf{b}_2\} \subset S = span(\mathbf{v}_1, \dots, \mathbf{v}_k) \subset \mathbb{R}^n$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Digression: Subspaces attached to an $n \times m$ matrix

Definition

Let **A** be an $n \times m$ matrix. Attached to **A** are three natural subspaces:

(i) The Row Space of ${\bf A}$ is the span of the row vectors of ${\bf A}$

$$RowSp(\mathbf{A}) \equiv span(Row_1(\mathbf{A}), Row_2(\mathbf{A}), \dots, Row_n(\mathbf{A}))$$

= {c_1Row_1(\mathbf{A}) + \dots + c_nRow_n(\mathbf{A}) | c_1, \dots, c_n \in \mathbb{R}}
 $\subset \mathbb{R}^m$

(ii) The Column Space of A is the span of the column vectors of A

$$\begin{aligned} \mathsf{ColSp}\left(\mathbf{A}\right) &\equiv \mathsf{span}\left(\mathsf{Col}_{1}\left(\mathbf{A}\right), \mathsf{Col}_{2}\left(\mathbf{A}\right), \dots, \mathsf{Col}_{m}\left(\mathbf{A}\right)\right) \\ &= \left\{c_{1}\mathsf{Col}_{1}\left(\mathbf{A}\right) + \dots + c_{m}\mathsf{Col}_{m}\left(\mathbf{A}\right) \mid c_{1}, \dots, c_{m} \in \mathbb{R}\right\} \\ &\subset \mathbb{R}^{n} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Subspaces attached to an $n \times m$ matrix, Cont'd

(iii) The Null Space of A is the solution set of the homogeneous linear system Ax = 0:

$$NullSp(\mathbf{A}) \equiv \{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{A}\mathbf{x} = \mathbf{0}\} \\ \subset \mathbb{R}^m$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Finding Bases for the Row Space of a Matrix

Lemma

If **A** is a matrix in R.E.F., then the non-zero row vectors of **A** are linearly independent and form a basis for $RowSp(\mathbf{A})$.

Idea of Proof: Let ${\bf A}$ be a matrix in R.E.F. and let ${\bf r}_1,\ldots,{\bf r}_k$ be the non-zero rows of ${\bf A}$ Suppose

$$c_1\mathbf{r}_1 + c_2\mathbf{r}_2 + \dots + c_k\mathbf{r}_k = \mathbf{0} \tag{1}$$

The pivot entry of \mathbf{r}_1 cannot be cancelled with corresponding entries in other rows and so we must have $c_1 = 0$. Equation (1) then becomes

$$c_2\mathbf{r}_2 + \dots + c_k\mathbf{r}_k = \mathbf{0} \tag{2}$$

But now the pivot entry of \mathbf{r}_2 cannot be cancelled with the corresponding entries in $\mathbf{r}_3, \ldots, \mathbf{r}_k$ and so $c_2 = 0$.

Repeating this argument, we eventually conclude that equation (1) implies $c_1 = 0, c_2 = 0, \ldots, c_k = 0$. Thus, the non-zero rows of a matrix in R.E.F. are necessarily linearly independent.

Since the nonzero rows of **A** are linearly independent and generate the row space of **A**, the nonzero rows of **A** are a basis for $RowSp(\mathbf{A})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

Elementary row operations do not change the row space of a matrix.

Idea of Proof: Consider a matrix with 2 rows \textbf{r}_1 and \textbf{r}_2

$$\mathbf{A} = \begin{bmatrix} \leftarrow \mathbf{r}_{1} \rightarrow \\ \leftarrow \mathbf{r}_{2} \rightarrow \end{bmatrix} \Rightarrow RowSp(\mathbf{A}) = \{c_{1}\mathbf{r}_{1} + c_{2}\mathbf{r}_{2} \mid c_{1}, c_{2} \in \mathbb{R}\}$$
(i)
$$\mathbf{A}' = \mathcal{R}_{R_{1} \leftrightarrow R_{2}}(\mathbf{A})$$

$$RowSp(\mathbf{A}') = \{c_{1}\mathbf{r}_{2} + c_{2}\mathbf{r}_{1} \mid c_{1}, c_{2} \in \mathbb{R}\} = RowSp(\mathbf{A})$$
(ii)
$$\mathbf{A}'' = \mathcal{R}_{R_{2} \rightarrow \lambda R_{2}}(\mathbf{A})$$

$$RowSp(\mathbf{A}'') = \{c_{1}\mathbf{r}_{1} + c_{2}\lambda\mathbf{r}_{2} \mid c_{1}, c_{2} \in \mathbb{R}\} = RowSp(\mathbf{A})$$
(iii)
$$\mathbf{A}''' = \mathcal{R}_{R_{2} \rightarrow \lambda R_{2}}(\mathbf{A})$$

$$RowSp(\mathbf{A}''') = \{c_{1}\mathbf{r}_{1} + c_{2}\lambda\mathbf{r}_{2} \mid c_{1}, c_{2} \in \mathbb{R}\} = RowSp(\mathbf{A})$$
(iii)
$$\mathbf{A}''' = \mathcal{R}_{R_{2} \rightarrow R_{2} + \lambda R_{1}}(\mathbf{A})$$

$$RowSp(\mathbf{A}''') = \{c_{1}\mathbf{r}_{1} + c_{2}(\mathbf{r}_{2} + \lambda\mathbf{r}_{1}) \mid c_{1}, c_{2} \in \mathbb{R}\}$$

$$= \{(c_{1} + \lambda c_{2})\mathbf{r}_{1} + c_{2}\mathbf{r}_{2} \mid c_{1}, c_{2} \in \mathbb{R}\} = RowSp(\mathbf{A})$$

Corollary

Suppose **A** is an $n \times m$ matrix and let **A**' be any R.E.F. of **A** Then the non-zero rows of the R.E.F. (**A**') form a basis for $RowSp(\mathbf{A})$. Proof: From first lemma

$$\mathit{RowSp}\left(\mathbf{A}'
ight)=\mathit{RowSp}\left(\mathbf{A}
ight)$$

and so, by the second lemma,

non-zero rows of R.E.F.
$$\mathbf{A}' = \text{basis for } RowSp(\mathbf{A}')$$

= basis for $RowSp(\mathbf{A})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application: Finding a basis for $S = span(\mathbf{w}_1, \dots, \mathbf{w}_k)$ when $\mathbf{w}_1, \dots, \mathbf{w}_k$ are not linearly independent

Procedure:

- Write the vectors $\mathbf{w}_1, \ldots, \mathbf{w}_k$ as the rows of a matrix \mathbf{A}
- Row reduce A to a matrix A' in R.E.F.
- The non-zero rows of \mathbf{A}' will be a basis for $RowSp(\mathbf{A}') = RowSp(\mathbf{A}) = span(\mathbf{w}_1, \dots, \mathbf{w}_k) = S$

This works because

- Elementary row operations do not change the row space of a matrix
- The non-zero rows of matrix in R.E.F. provide a basis for its row space.

Example

Consider

$$S = span\left(\left[1, 0, 1, 1
ight], \left[1, 1, -1, 0
ight], \left[0, -1, 2, 1
ight]
ight)$$

Find a basis for S.

Form a matrix A using the given vectors as rows

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & -1 & 2 & 1 \end{array} \right]$$

Note

S = span([1, 0, 1, 1], [1, 1, -1, 0], [0, -1, 2, 1]) = RowSp(A)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example, Cont'd

Row reduce A to a matrix A' in R.E.F.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & -1 & 2 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{A}'$$

• The non-zero rows of \mathbf{A}' will be a basis for $RowSp(\mathbf{A}) = S$.

Thus, a suitable basis for S will be

$$B = \{ [1,0,1,1] , [0,1,-2,-1] \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bases for Solution Sets of Homogeneous Linear Systems

Recall there are two basic prototypes for a subspace of \mathbb{R}^m

- the span of a set of vectors
- the solution set of a homogeneous linear system Ax = 0

We have just described how to find a basis for the first type of subspace.

As it turns out, we already know how to find a basis for the solution set of a homogeneous linear system. For such bases are automatically produced by our method of solving linear systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bases for Solution Sets of Homogeneous Linear Systems, Cont'd

Recall our method of solving linear systems $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$

- ▶ form augmented matrix [A | 0]
- row reduce [A | 0] to its Reduced Row Echelon Form [A" | 0] (Note that the last column remains all zeros throughout the row reduction)
- write down the equations corresponding to [A" | 0] and move the free variables to the right hand side. These equations then express the fixed variables in terms of the free variables.
- write down a typical solution vector x and then expand that vector in terms of the free variables (Note there that will be no constant vector in the expansion.)

Bases for Solution Sets of Homogeneous Linear Systems, Cont'd

The solution set S of the homogeneous linear system Ax = 0 is thus a subspace of the form

$$S = \{s_1 \mathbf{v}_1 + \cdots + s_k \mathbf{v}_k \mid s_1, \ldots, s_k \in \mathbb{R}\}$$

(Here s_1, \ldots, s_k are the free parameters of the solution.) Theorem Suppose

$$S = \{s_1\mathbf{v}_1 + \cdots + s_k\mathbf{v}_k \mid s_1, \ldots, s_k \in \mathbb{R}\}$$

is the solution set of a homogeneous linear system constructed as described above. Then the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are a basis for S

Example

Find a basis for the solution set of

$$\begin{aligned} x_{1} - x_{2} + x_{3} + x_{4} &= 0\\ x_{1} + x_{2} - x_{3} + x_{4} &= 0 \end{aligned}$$
$$\begin{bmatrix} \mathbf{A} \mid \mathbf{0} \end{bmatrix} &= \begin{bmatrix} 1 & -1 & 1 & 1 \mid 0\\ 1 & 1 & -1 & 1 \mid 0 \end{bmatrix} \\ \downarrow & \text{row reduction}\\ \begin{bmatrix} \mathbf{A}'' \mid \mathbf{0} \end{bmatrix} &= \begin{bmatrix} 1 & 0 & 0 & 1 \mid 0\\ 0 & 1 & -1 & 0 \mid 0 \end{bmatrix} \\ \downarrow \\ x_{1} &= -x_{4} \\ x_{2} &= x_{3} \end{aligned} \Rightarrow \qquad \mathbf{x} = x_{3} \begin{bmatrix} 0\\ 1\\ 1\\ 0 \end{bmatrix} + x_{4} \begin{bmatrix} -1\\ 0\\ 0\\ 1 \end{bmatrix}$$

Note how $\mathbf{x} = \mathbf{0}$ \Leftrightarrow $x_3 = 0$ and $x_4 = 0$

Example, Cont'd

Thus,

$\left\{ \left[\begin{array}{c} 0\\1\\1\\0 \end{array} \right], \left[\begin{array}{c} -1\\0\\0\\1 \end{array} \right] \right\}$

are linearly independent.

Since these two vectors are linearly independent and generate the solution set S, they form a basis for the solution set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで