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Agenda

▶ Recap: Subspaces, Bases and Linear Independence

▶ Subspaces Attached to a Matrix

▶ Finding a Basis for RowSp (A)



Subspaces

Definition
A subset S of a vector space Rn is a subspace if:

▶ whenever v ∈ S and λ ∈ R, λv ∈ S

▶ whenever v1, v2 ∈ S , v1 + v2 ∈ S



Two Fundamental Ways Subspaces Arise

(i) The span of a set of vectors:

S = span (v1, . . . , vk)

≡ {c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ R}

(ii) The solution set of a homogeneous linear system Ax = 0



Subspaces of Rn : Geometric Picture

Geometrically, subspaces are hyperplanes that pass through the
origin 0 ∈ Rn.

Figure: S = span (v1, . . . , vk) ⊂ Rn



Bases and Coordinatization of Subspaces

Problem: How to deal with n-dimensional vectors living in a
k-dimensional subspace of Rn?
Idea: If

S = span (v1, . . . , vk)

each w ∈ S can be expressed as

w = c1v1 + · · ·+ ckvk

Use [c1, . . . , ck ] ∈ Rk as coordinates for w.

However, if the vectors v1, . . . , vk are not “linearly independent”
the numbers c1, . . . , ck will not be not unique (leading to multiple
coordinates for a given w ∈ S).



Subspaces of Rn : Geometric Picture (reprise)

Figure: S = span (v1, . . . , vk) ⊂ Rn

In general, {v1, . . . , vk} will not be a basis for
S = span (v1, . . . , vk).



Linear Independence

Definition
A set of vectors {v1, . . . , vk} are said to be linearly independent
if the only solution of

x1v1 + · · ·+ xkvk = 0

is
x1 = 0 , x2 = 0 , . . . , xk = 0

Theorem
Let B = {v1, . . . , vk} and let S = span (v1, . . . , vk).
Then

B is a basis for S ⇐⇒ The vectors in B are linearly independent



Revised Definition of Basis

Original Definition: A basis for a subspace S is a set of vectors
{b1, . . . ,bk} such that every vector w in S can be uniquely
written as

w = c1b1 + · · ·+ ckbk

Since the numbers c1, . . . , ck are unique, they provide “good
coordinates” for w ∈ S .
Revised Definition: A set of vectors B = {b1, . . . ,bk} is a basis
for a subspace S ⊂ Rm if

(i) S = span (b1, . . . ,bk)

(ii) {b1, . . . ,bk} are linearly independent.

We then have

If B = {b1, . . . ,bk} is a basis for a subspace S ⊂ Rn, then every
vector w ∈ S has a unique coordinate vector wB ∈ Rk defined by

w = c1b1 + · · ·+ ckbk ⇐⇒ wB ≡ [c1, . . . , ck ] ∈ Rk



Geometric Picture: Basis Vectors in a Subspace

Figure: Basis {b1,b2} ⊂ S = span (v1, . . . , vk) ⊂ Rn



Digression: Subspaces attached to an n ×m matrix

Definition
Let A be an n ×m matrix. Attached to A are three natural
subspaces:

(i) The Row Space of A is the span of the row vectors of A

RowSp (A) ≡ span (Row1 (A) ,Row2 (A) , . . . ,Rown (A))

= {c1Row1 (A) + · · ·+ cnRown (A) | c1, . . . , cn ∈ R}
⊂ Rm

(ii) The Column Space of A is the span of the column vectors of
A

ColSp (A) ≡ span (Col1 (A) ,Col2 (A) , . . . ,Colm (A))

= {c1Col1 (A) + · · ·+ cmColm (A) | c1, . . . , cm ∈ R}
⊂ Rn



Subspaces attached to an n ×m matrix, Cont’d

(iii) The Null Space of A is the solution set of the homogeneous
linear system Ax = 0:

NullSp (A) ≡ {x ∈ Rm | Ax = 0}
⊂ Rm



Finding Bases for the Row Space of a Matrix

Lemma
If A is a matrix in R.E.F., then the non-zero row vectors of A are
linearly independent and form a basis for RowSp (A).

Idea of Proof:
Let A be a matrix in R.E.F. and let r1, . . . , rk be the non-zero rows
of A
Suppose

c1r1 + c2r2 + · · ·+ ckrk = 0 (1)

The pivot entry of r1 cannot be cancelled with corresponding
entries in other rows and so we must have c1 = 0. Equation (1)
then becomes

c2r2 + · · ·+ ckrk = 0 (2)

But now the pivot entry of r2 cannot be cancelled with the
corresponding entries in r3, . . . , rk and so c2 = 0.



Repeating this argument, we eventually conclude that equation (1)
implies c1 = 0, c2 = 0, . . . , ck = 0.
Thus, the non-zero rows of a matrix in R.E.F. are necessarily
linearly independent.

Since the nonzero rows of A are linearly independent and generate
the row space of A, the nonzero rows of A are a basis for
RowSp (A).



Lemma
Elementary row operations do not change the row space of a
matrix.

Idea of Proof: Consider a matrix with 2 rows r1 and r2

A =

[
← r1 →
← r2 →

]
⇒ RowSp (A) = {c1r1 + c2r2 | c1, c2 ∈ R}

(i) A′ = RR1←→R2 (A)

RowSp
(
A′
)
= {c1r2 + c2r1 | c1, c2 ∈ R} = RowSp (A)

(ii) A′′ = RR2→λR2 (A)

RowSp
(
A′′

)
= {c1r1 + c2λr2 | c1, c2 ∈ R} = RowSp (A)

(iii) A′′′ = RR2→R2+λR1 (A)

RowSp
(
A′′′

)
= {c1r1 + c2 (r2 + λr1) | c1, c2 ∈ R}
= {(c1 + λc2) r1 + c2r2 | c1, c2 ∈ R} = RowSp (A)



Corollary

Suppose A is an n ×m matrix and let A′ be any R.E.F. of A Then
the non-zero rows of the R.E.F. (A′) form a basis for RowSp (A).

Proof: From first lemma

RowSp
(
A′
)
= RowSp (A)

and so, by the second lemma,

non-zero rows of R.E.F. A′ = basis for RowSp
(
A′
)

= basis for RowSp (A)



Application: Finding a basis for S = span (w1, . . . ,wk)
when w1, . . . ,wk are not linearly independent

Procedure:

▶ Write the vectors w1, . . . ,wk as the rows of a matrix A

▶ Row reduce A to a matrix A′ in R.E.F.

▶ The non-zero rows of A′ will be a basis for
RowSp (A′) = RowSp (A) = span (w1, . . . ,wk) = S

This works because

▶ Elementary row operations do not change the row space of a
matrix

▶ The non-zero rows of matrix in R.E.F. provide a basis for its
row space.



Example

Consider

S = span ([1, 0, 1, 1] , [1, 1,−1, 0] , [0,−1, 2, 1])

Find a basis for S .

▶ Form a matrix A using the given vectors as rows

A =

 1 0 1 1
1 1 −1 0
0 −1 2 1


Note

S = span ([1, 0, 1, 1] , [1, 1,−1, 0] , [0,−1, 2, 1]) = RowSp(A)



Example, Cont’d

▶ Row reduce A to a matrix A′ in R.E.F.

A =

 1 0 1 1
1 1 −1 0
0 −1 2 1

 −→
 1 0 1 1

0 1 −2 −1
0 0 0 0

 = A′

▶ The non-zero rows of A′ will be a basis for RowSp(A) = S .

▶ Thus, a suitable basis for S will be

B = {[1, 0, 1, 1] , [0, 1,−2,−1]}



Bases for Solution Sets of Homogeneous Linear Systems

Recall there are two basic prototypes for a subspace of Rm

▶ the span of a set of vectors

▶ the solution set of a homogeneous linear system Ax = 0

We have just described how to find a basis for the first type of
subspace.

As it turns out, we already know how to find a basis for the
solution set of a homogeneous linear system. For such bases are
automatically produced by our method of solving linear systems.



Bases for Solution Sets of Homogeneous Linear Systems,
Cont’d

Recall our method of solving linear systems Ax = 0

▶ form augmented matrix [A | 0]
▶ row reduce [A | 0] to its Reduced Row Echelon Form [A′′ | 0]

(Note that the last column remains all zeros throughout the
row reduction)

▶ write down the equations corresponding to [A′′ | 0] and move
the free variables to the right hand side. These equations then
express the fixed variables in terms of the free variables.

▶ write down a typical solution vector x and then expand that
vector in terms of the free variables (Note there that will be
no constant vector in the expansion.)



Bases for Solution Sets of Homogeneous Linear Systems,
Cont’d

The solution set S of the homogeneous linear system Ax = 0 is
thus a subspace of the form

S = {s1v1 + · · ·+ skvk | s1, . . . , sk ∈ R}

(Here s1, . . . , sk are the free parameters of the solution.)

Theorem
Suppose

S = {s1v1 + · · ·+ skvk | s1, . . . , sk ∈ R}

is the solution set of a homogeneous linear system constructed as
described above. Then the vectors v1, . . . , vk are a basis for S



Example
Find a basis for the solution set of

x1 − x2 + x3 + x4 = 0

x1 + x2 − x3 + x4 = 0

[A | 0] =

[
1 −1 1 1 0
1 1 −1 1 0

]
↓ row reduction[

A′′ | 0
]

=

[
1 0 0 1 0
0 1 −1 0 0

]
↓

x1 = −x4
x2 = x3

⇒ x = x3


0
1
1
0

+ x4


−1
0
0
1


Note how x = 0 ⇔ x3 = 0 and x4 = 0



Example, Cont’d

Thus, 


0
1
1
0

 ,


−1
0
0
1




are linearly independent.

Since these two vectors are linearly independent and generate the
solution set S , they form a basis for the solution set.


