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Subspaces attached to a Matrix and their Bases

Let
ail - dam

A=
anl - anm

and suppose A” is the R.R.E.F. of A.
(i) The Row Space of A

RowSp (A) = span([ai1,-.-,31m],---,[3n1s---»anm]) C R™

The non-zero row vectors of A” form a basis for RowSp (A)



Subspaces attached to a Matrix and their Bases, Cont'd

(ii) Column Space of A

a1l aim
ColSp (A) = span N I : C R”
anl dnm
The columns of A corresponding to the columns of the
R.R.E.F. A” that contain pivots form a basis for ColSp (A)
(iii) The Null Space of A

NullSp(A) = {x e R" | Ax=0} C R™

When the solutions of Ax = 0 are expressed as points on a
hyperplane, the constant vectors being multiplied by the free
variables form a basis for NullSp (A)



Dimensions of Subspaces

Definition
The dimension of a subspace W is the number of vectors in any
basis for W.

(i) dim(RowSp (A)) = # of pivots in any R.E.F. of A.
(i) dim(ColSp (A)) = # of pivots in any R.E.F. of A.
(iii) dim (NullSp (A)) = # of columns w/o pivots any R.E.F. of A.

Nomenclature

The rank of a matrix A is the common dimension of RowSp (A)
and ColSp (A).

The nullity of a matrix A is the dimension of NullSp (A).

Note
# columns of A = Rank (A) + Nullity (A)



Example

11 2 1 0 5

GivenA=|2 3 1 ] = [ 01 -3 ] = R.R.E.F.(A)
1 21 00 O

Deduce

(a) a basis for RowSp (A)
(b) a basis for ColSp (A)
(c) a basis for NullSp (A)
(d) the rank of A

(e) the nullity of A



(a) Basis for RowSp (A)

11 2 1 0 5
A=|23 1| = |01 —3|=RREF.(A)
1 21 00 O
The non-zero rows of R.R.E.F.(A) will provide a basis for
RowSp (A).
Thus,
basis for RowSp (A) = {[1,0,5] , [0,1,—3]}



(b) Basis for ColSp (A)

112 10 5
A=|23 1| = |01 -3|=RREF.(A
121 00 0

A basis for ColSp (A) is given by the columns of A that correspond
to the columns of R.E.F.(A) that have pivots. Our matrix in

R.R.E.F. has pivots in its first two columns; so we can use columns
land 2 of A:

basis for ColSp (A) =

N



(c) Basis for NullSp (A)

A basis for Null (A) is given by the constant vectors that occur in
the hyperplane form of the solution to Ax = 0.

Now
1 0 510
R.R.E.F.([A|0]) =[R.R.E.F.(A)JO]=| 0 1 -3]|0
00 010

and so the corresponding equations of the solution are

X1+5X3—0} N {Xl——5X3

xo —3x3 =0 X2 = 3x3
—5X3 -5
X = 3x3 = X3 3
X3 1

The constant vector being multiplied by the free parameter x3 will
be the (only) basis vector for NullSp (A): Thus,

-5
basis for Null (A) = { ’V 3 -‘ ¥



Rank and Nullity of A

Rank (A) = # pivotsin R.R.E.F.(A)
= 2

Nullity (A) = dim (NullSp (A))
= # columns of R.E.F. without pivots
=1



Functions Between Sets

We will now turn to a new topic, the study of an simple class of
functions between vector spaces.

We'll begin by recalling a little bit of the basic theory of functions
between two sets.

Definition

A function f : X — Y from a set X to a set Y is a rule for each
element of Y to an element of Y. The set X is called the domain
of f, and the set Y is called the codomain of 7.

Figure: f : X = Y



Functions Between Vector Spaces, Linear Transformations

We are going to be interested in a special family of functions
between vector spaces; characterized by their behavior w.r.t. the
two fundamental vector space operations; scalar multiplication and
vector addition

Definition
A linear transformation is a function T : R™ — R” such that

(i) AeR,veR™ = T(Av)=AT(v)

(i) vi,ve € R™ = T(vi+vp) =T (v1)+ T (v2)
When | say that “linear transformations preserve scalar

multiplication and vector addition”, | am referring to properties (i)
and (ii) above.



Linear Transformations, Cont’'d

If a function T : R™ — R” preserves both vector addition and
scalar addition,

Then it will also preserve any combination of such operations;
Thus, it will preserve arbitrary linear combinations of vectors

and so

Lemma
If T :R™ — R" js a linear transformation, then

T (r1v1 + vy + -+ -+ rkvk) =nT (Vl) +nT (V2) 4+ 4T (vk)



Linear Transformations and Linear Functions

Suppose we have a linear transformation T : R™ — R” from R™
to R".

Let x € domain(T) = R™, and let y = T(x) € R".

If T is a linear transformation, then each component of the image
vector y must be a linear function of the components of x.

More specifically, if we write

TX)=y=[Da(x1,---sXm) -y ¥n (X5 ooy Xm)]

then each component function y; (xi,. .., Xxn) must be a linear
function of the variables xi, ..., x, without constant terms; i.e.,
each component function y; a function of the form

Yi(X1,. .., Xm) = CiiX1 + CiaXxo + -+ + CimXm



Checking if a function T : R™ — R" is a Linear
Transformation

Example 1:

Show that the function T :R? — R3: (s,t) — (t,s,1+t+5s)is
not a linear transformation. (Note the constant term 1 in the linear
function corresponding to the third component of the image.)

Let v=(s,t). Then
T(v)=T(s,t)=(t,s,1+t+s)
and

T(rv) = T(rs,rt)=(rt,rs,1+ rs+rt)
rT(v) = r(t,s,1+t+s)=/(rt,rs,r+ rt+rs)

Since T (rv) # rT (v), T does not preserve scalar multiplication:
hence T is not a linear transformation.



Checking if a function T : R™ — R" is a Linear

Transformation, Cont’'d

Example 2: Let A be an n X m matrix.
To any vector in R™, we can associate an m x 1 column vector x,
and via multiplication from the left by A, a n x 1 column vector

ailr - dm X1 a11x1 + -+ a1mXm
Ax= | : U : =1 : e R"
dnl -"°°  dmm Xm aniX1 + -+ anmXm
Define T4 : R™ — R" by
Ta(x) = Ax
Then

Ta(Ax) = A(Xx) = AAx = ATa (x)
TA (Xl —+ X2) = A (Xl —+ X2) = AX1 —+ AX2 = TA (Xl) =+ TA (X2)

and so Tp is a linear transformation.



