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Subspaces attached to a Matrix and their Bases

Let

A =

 a11 · · · a1m
...

. . .
...

an1 · · · anm


and suppose A′′ is the R.R.E.F. of A.

(i) The Row Space of A

RowSp (A) ≡ span ([a11, . . . , a1m] , . . . , [an1, . . . , anm]) ⊂ Rm

The non-zero row vectors of A′′ form a basis for RowSp (A)



Subspaces attached to a Matrix and their Bases, Cont’d

(ii) Column Space of A

ColSp (A) = span


 a11

...
an1

 , . . . ,

 a1m
...

anm


 ⊂ Rn

The columns of A corresponding to the columns of the
R.R.E.F. A′′ that contain pivots form a basis for ColSp (A)

(iii) The Null Space of A

NullSp (A) = {x ∈ Rm | Ax = 0} ⊂ Rm

When the solutions of Ax = 0 are expressed as points on a
hyperplane, the constant vectors being multiplied by the free
variables form a basis for NullSp (A)



Dimensions of Subspaces

Definition
The dimension of a subspace W is the number of vectors in any
basis for W .

(i) dim (RowSp (A)) = # of pivots in any R.E.F. of A.

(ii) dim (ColSp (A)) = # of pivots in any R.E.F. of A.

(iii) dim (NullSp (A)) = # of columns w/o pivots any R.E.F. of A.

Nomenclature
The rank of a matrix A is the common dimension of RowSp (A)
and ColSp (A).
The nullity of a matrix A is the dimension of NullSp (A).

Note
# columns of A = Rank (A) + Nullity (A)



Example

Given A =

 1 1 2
2 3 1
1 2 1

 =⇒

 1 0 5
0 1 −3
0 0 0

 = R.R.E .F . (A)

Deduce

(a) a basis for RowSp (A)

(b) a basis for ColSp (A)

(c) a basis for NullSp (A)

(d) the rank of A

(e) the nullity of A



(a) Basis for RowSp (A)

A =

 1 1 2
2 3 1
1 2 1

 =⇒

 1 0 5
0 1 −3
0 0 0

 = R.R.E .F . (A)

The non-zero rows of R.R.E .F . (A) will provide a basis for
RowSp (A).
Thus,

basis for RowSp (A) = {[1, 0, 5] , [0, 1,−3]}



(b) Basis for ColSp (A)

A =

 1 1 2
2 3 1
1 2 1

 =⇒

 1 0 5
0 1 −3
0 0 0

 = R.R.E .F . (A)

A basis for ColSp (A) is given by the columns of A that correspond
to the columns of R.E .F . (A) that have pivots. Our matrix in
R.R.E.F. has pivots in its first two columns; so we can use columns
1 and 2 of A :

basis for ColSp (A) =


 1

2
1

 ,

 1
3
2





(c) Basis for NullSp (A)
A basis for Null (A) is given by the constant vectors that occur in
the hyperplane form of the solution to Ax = 0.
Now

R.R.E .F . ([A|0]) = [R.R.E .F . (A) |0] =

 1 0 5 0
0 1 −3 0
0 0 0 0


and so the corresponding equations of the solution are

x1 + 5x3 = 0
x2 − 3x3 = 0

}
−→

{
x1 = −5x3
x2 = 3x3

x =

 −5x3
3x3
x3

 = x3

 −5
3
1


The constant vector being multiplied by the free parameter x3 will
be the (only) basis vector for NullSp (A): Thus,

basis for Null (A) =


 −5

3
1





Rank and Nullity of A

Rank (A) = # pivots in R.R.E .F . (A)

= 2

Nullity (A) = dim (NullSp (A))

= # columns of R.E.F. without pivots

= 1



Functions Between Sets
We will now turn to a new topic, the study of an simple class of
functions between vector spaces.

We’ll begin by recalling a little bit of the basic theory of functions
between two sets.

Definition
A function f : X → Y from a set X to a set Y is a rule for each
element of Y to an element of Y . The set X is called the domain
of f , and the set Y is called the codomain of f .

Figure: f : X → Y



Functions Between Vector Spaces, Linear Transformations

We are going to be interested in a special family of functions
between vector spaces; characterized by their behavior w.r.t. the
two fundamental vector space operations; scalar multiplication and
vector addition

Definition
A linear transformation is a function T : Rm → Rn such that

(i) λ ∈ R , v ∈ Rm ⇒ T (λv) = λT (v)

(ii) v1, v2 ∈ Rm ⇒ T (v1 + v2) = T (v1) + T (v2)

When I say that “linear transformations preserve scalar
multiplication and vector addition”, I am referring to properties (i)
and (ii) above.



Linear Transformations, Cont’d

If a function T : Rm → Rn preserves both vector addition and
scalar addition,
Then it will also preserve any combination of such operations;
Thus, it will preserve arbitrary linear combinations of vectors

and so

Lemma
If T : Rm → Rn is a linear transformation, then

T (r1v1 + r2v2 + · · ·+ rkvk) = r1T (v1) + r2T (v2) + · · ·+ rkT (vk)



Linear Transformations and Linear Functions

Suppose we have a linear transformation T : Rm → Rn from Rm

to Rn.

Let x ∈ domain(T ) = Rm, and let y = T (x) ∈ Rn.
If T is a linear transformation, then each component of the image
vector y must be a linear function of the components of x.
More specifically, if we write

T (x) = y = [y1 (x1, . . . , xm) , . . . , yn (x1, . . . , xm)]

then each component function yi (x1, . . . , xm) must be a linear
function of the variables x1, . . . , xm without constant terms; i.e.,
each component function yi a function of the form

yi (x1, . . . , xm) = ci ,1x1 + ci ,2x2 + · · ·+ ci ,mxm



Checking if a function T : Rm → Rn is a Linear
Transformation

Example 1:
Show that the function T : R2 → R3 : (s, t) → (t, s, 1 + t + s) is
not a linear transformation. (Note the constant term 1 in the linear
function corresponding to the third component of the image.)

Let v = (s, t). Then

T (v) = T (s, t) = (t, s, 1 + t + s)

and

T (rv) = T (rs, rt) = (rt, rs, 1 + rs + rt)

rT (v) = r (t, s, 1 + t + s) = (rt, rs, r + rt + rs)

Since T (rv) ̸= rT (v), T does not preserve scalar multiplication:
hence T is not a linear transformation.



Checking if a function T : Rm → Rn is a Linear
Transformation, Cont’d

Example 2: Let A be an n ×m matrix.
To any vector in Rm, we can associate an m × 1 column vector x,
and via multiplication from the left by A, a n × 1 column vector

Ax =

 a11 · · · a1m
...

. . .
...

an1 · · · anm


 x1

...
xm

 =

 a11x1 + · · ·+ a1mxm
...
an1x1 + · · ·+ anmxm

 ∈ Rn

Define TA : Rm → Rn by

TA (x) = Ax

Then

TA (λx) = A (λx) = λAx = λTA (x)

TA (x1 + x2) = A (x1 + x2) = Ax1 + Ax2 = TA (x1) + TA (x2)

and so TA is a linear transformation.


