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Review: Linear Transformations and Matrices

A linear transformation is a function T : Rm → Rn between two
vector spaces such that

(i) T (λx) = λT (x) for all λ ∈ R, and all x ∈ Rm

(ii) T (x1 + x2) = T (x1) + T (x2) for all x1, x2 ∈ Rm

Linear Transformations ⇐⇒ Matrices :

▶ n ×m matrix A =⇒ linear transformation TA : Rm → Rn:

TA (x) ≡ Ax

▶ Linear transformation T : Rm → Rn =⇒ n ×m matrix AT

AT ≡

 ↑ · · · ↑
T (e1) · · · T (em)

↓ · · · ↓





Range and Kernel of a Linear Transformation
T : Rm → Rn

Range (T ) ≡ {y ∈ Rn | y = T (x) for some x ∈ Rn}
≈ ColSp (AT )

Ker (T ) ≡ {x ∈ Rm | T (x) = 0}
≈ NullSp (AT )

≡ solution set of ATx = 0



The Dimensions of Range (T ) and Ker (T )
Recall

Theorem
If A is an n ×m matrix

#columns of A = Rank (A) + Nullity (A)

where

Rank (A) = dim (RowSp (A)) = dim (ColSp (A))

= # (columns with pivots in any R.E.F. of A )

and

Nullity (A) = dim (NullSp (A))

= dim (solution set of Ax = 0)

= # (free parameters in general solution)

= # (columns without pivots in any R.E.F. of A)



Dimension Formula for Subspaces attached to a Linear
Transformation

Theorem
If T : Rm → Rn is a linear transformation, then

m = dim (Range(T )) + dim (Kernel(T ))

Proof Let AT be the n ×m matrix attached to T : Rm → Rn.

m = #(columns of AT )

= # (columns of any R.E.F. of AT with pivots)

+ # (columns any R.E.F. of AT without pivots)

= dim (ColSp (AT )) + dim (NullSp (AT ))

= dim (Range (T )) + dim (Kernel (T ))



Composition of Functions

Let f : A → B and g : B → C be two functions such that

Image(f ) ⊂ Domain(g)

Then the composition of f and g is the function f ◦ g : A → C
defined by

(f ◦ g) (a) = g (f (a)) ∀a ∈ A



Composition of Linear Transformations

Theorem
If T : Rm → Rn and S : Rn → Rp are linear transformations, then
the composed function

S ◦ T : Rm → Rp : S ◦ T (x) = S (T (x))

is also a linear transformation. Moreover, the p ×m matrix AS◦T
attached to the linear transformation S ◦ T can be computed as

AS◦T = ASAT



Example
Consider the linear transformations

T : R2 → R3 : T ([x1, x2]) = [x2, x1, x1 + x2]

S : R3 → R2 : S ([y1, y2, y3]) = [y1 + y2, y3]

We have

S ◦ T ([x1,x2]) = S ([x2, x1, x1 + x2]) = [x2 + x1, x1 + x2]

Thus,

AS◦T =

[
1 1
1 1

]
On the other hand,

AT =

 0 1
1 0
1 1

 , AS =

[
1 1 0
0 0 1

]
and

ASAT =

[
1 1 0
0 0 1

] 0 1
1 0
1 1

 =

[
1 1
1 1

]
= AS◦T



Invertibility of Functions
Let f : A → B be a function between two sets A and B.

Recall

Image(f ) ≡ {b ∈ B | b = f (a) for some a ∈ A}

Definition
A function f : A → B is called surjective if Image(f ) = B

In other words, f : A → B is surjective if every point b in the
codomain B is reachable from A via f .



Invertibility of Functions, Cont’d

Definition
A function f : A → B is called injective if

f (a) = f (a′) =⇒ a = a′

In other words, f : A → B is injective if distinct points in the
domain A get mapped to distinct points in the codomain B.



Surjectivity and Injectivity: Examples
Consider

f : R → R : f (x) = x2

This function is neither surjective nor injective.
f is not surjective because a negative number (regarded as an
element of the codomain) can not be reached by applying f to any
element x in the domain of f .
f is not injective because, for example,

f (1) = 1 = f (−1) but 1 ̸= −1

However, if we change just the domain and codomain of f we can
readily produce a function that is bijective. For example, let

R+ ≡ {x ∈ R | x > 0}

Then
f̃ : R+ → R+ : x 7→ x2

is both surjective and injective.



Bijective Functions and Invertibility

Definition
A function f : A → B is called bijective if f is both surjective and
injective

Definition
A function f : A → B is called invertible if there is a function
f −1 : B → A such that(

f ◦ f −1
)
(b) = b ∀b ∈ B(

f −1 ◦ f
)
(a) = a ∀a ∈ A

Theorem
A function is invertible if and only if it is bijective.



Invertibility of Linear Transformations

Remember that a linear transformation is a special kind of
function: it is a function T : Rm → Rn such that

λ ∈ R , x ∈ Rm =⇒ T (λx) = λT (x)

x1, x2 ∈ Rm =⇒ T (x1 + x2) = T (x1) + T (x2)

Lemma
A linear transformation T : Rm → Rn is surjective if and only if
Range(T ) = Rn.

(This follows from the fact that Range(T ) is the just linear algebra
terminology for image(T ) as a function between two vector
spaces.)



Lemma
A linear transformation T : Rm → Rn is injective if and only if
ker(T ) = {0}.
Proof. We first note that for any linear transformation T (0) = 0.
To see this choose any x ∈ Rm. Then

T (0) = T (x− x)

= T (x)− T (x)

= 0



Proof: =⇒

Suppose T is injective. By definition,

ker(T ) = {x ∈ Rm | T (x) = 0}

Suppose we had a vector x besides 0, such that T (x) = 0. Then
we would have

T (x) = 0 = T (0) but x ̸= 0

which would contradict T being injective.
Therefore, 0 must be the only vector whose value is 0. Hence,
ker(T ) = {0}.



Proof: ⇐=
Suppose ker(T ) = {0}. We want to show that T is injective.
Suppose

T (x1) = T (x2)

Then

0 = T (x1)− T (x2)

= T (x1 − x2)

But if ker(T ) = {0}, then we must have

x1 − x2 = 0

because no other vector can attain the value 0. Thus, when
ker(T ) = {0},

T (x1) = T (x2) =⇒ x1 = x2

and so T is injective.



Vector Space Isomorphisms

Recall that a function f : A → B is invertible if it is both surjective
and injective.
For linear transformations then (using the appropriate
nomenclature for linear transformations)

Theorem
A linear transformation T : Rm → Rn is invertible if and only if

(i) Range(T ) = Rn (T is surjective)

(ii) Ker(T ) = {0} (T is injective)

Definition
An invertible linear transformation is called a vector space
isomorphism


