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Review: Linear Transformations and Matrices

A linear transformation is a function T : Rm → Rn between two
vector spaces such that

(i) T (λx) = λT (x) for all λ ∈ R, and all x ∈ Rm

(ii) T (x1 + x2) = T (x1) + T (x2) for all x1, x2 ∈ Rm

Linear Transformations ⇐⇒ Matrices :

▶ n ×m matrix A =⇒ linear transformation TA : Rm → Rn:

TA (x) ≡ Ax

▶ Linear transformation T : Rm → Rn =⇒ n ×m matrix AT

AT ≡

 ↑ · · · ↑
T (e1) · · · T (em)
↓ · · · ↓





Range and Kernel of a Linear Transformation
T : Rm → Rn

Range (T ) ≡ {y ∈ Rn | y = T (x) for some x ∈ Rn}
≈ ColSp (AT )

Ker (T ) ≡ {x ∈ Rm | T (x) = 0}
≈ NullSp (AT )

≡ solution set of ATx = 0



The Dimensions of Range (T ) and Ker (T )
Recall

Theorem
If A is an n ×m matrix

#columns of A = Rank (A) + Nullity (A)

where

Rank (A) = dim (RowSp (A)) = dim (ColSp (A))

= # (columns with pivots in any R.E.F. of A )

and

Nullity (A) = dim (NullSp (A))

= dim (solution set of Ax = 0)

= # (free parameters in general solution)

= # (columns without pivots in any R.E.F. of A)



Dimension Formula for Subspaces attached to a Linear
Transformation

Theorem
If T : Rm → Rn is a linear transformation, then

m = dim (Range(T )) + dim (Kernel(T ))

Proof Let AT be the n ×m matrix attached to T : Rm → Rn.

m = #(columns of AT )

= # (columns of any R.E.F. of AT with pivots)

+ # (columns any R.E.F. of AT without pivots)

= dim (ColSp (AT )) + dim (NullSp (AT ))

= dim (Range (T )) + dim (Kernel (T ))



Vector Spaces over R

Definition
A vector space over R is a set V for which the following
operations are defined

▶ scalar multiplication: for every λ ∈ R and v ∈ V we have a
map (λ, v)→ λv ∈ V .

▶ vector addition: for every pair of vectors u, v ∈ V we have a
map (u, v)→ u+ v ∈ V

It is also necessary that these operations of vector addition and
scalar multiplication together satisfy 8 axioms.



Vector Space Axioms

1. (u+ v) +w = u+ (v +w) (associativity of vector addition)

2. u+ v = v + u (commutativity of vector addition)

3. There exists an element 0 ∈ V such that v + 0 = v for all
v ∈ V . (additive identity.)

4. For each v ∈ V there exists an element −v ∈ V such that
v + (−v) = 0. (additive inverses)

5. λ (u+ v) = λu+ λv (distributivity of scalar multipliciation
over vector addition).

6. (λ+ µ) v = λv + µv. (distributivity of scalar multiplication
over addition of scalars)

7. λ(µv) = (λµ)v (scalar multiplication preserves associativity of
multiplication in R.)

8. (1)v = v (preservation of scale).



Examples of Vector Spaces over R

To show that a set V is a vector space one has to state explicit
rules defining

(i) scalar multiplication in V : ∗V : V × R→ V

(ii) vector addition in V : +V : V × V → V

(iii) the zero vector 0V in V : 0V + v = v for all v ∈ V

and then verify that all 8 axioms are then satisfied by virtue of the
explicit rules for (i), (ii), and (iii).
Example 1. V = Rn = {[x1, . . . , xn] | x1, . . . , xn ∈ R}
▶ scalar multiplication : λ [x1, . . . , xn] ≡ [λx1, . . . , λxn]

▶ vector addition :
[x1, . . . , xn] + [y1, . . . , yn] = [x1 + y1, . . . , xn + yn]

▶ zero vector : 0 = [0, . . . , 0]



Examples of Vector Spaces over R, Cont’d

Example 2. Subspaces
Let V be a subspace of Rn. Since V is closed under both scalar
multiplication and vector addition

▶ λ ∈ R , v ∈ V =⇒ (λv) ∈ V ,

▶ v1, v2 ∈ V =⇒ v1 + v2 ∈ V

one obtains rules for scalar multiplication and vector addition in V
by restricting operations of scalar multiplication and vector
addition in Rn to V :

∗V : R× V → V ≡ ∗|R×V

+V : V × V → V ≡ +|V×V

Furthermore, one can use 0Rn ∈ V as the zero-vector 0V of V .
With ∗V , +V , and 0V so defined, all 8 axiom are satisfied, and so
any subspace of Rn is a vector space over R.



Examples of Vector Spaces over R, Cont’d

Example 3. V = { functions f : R→ R}
▶ scalar multiplication : (λf ) (x) = λf (x)

▶ vector addition : (f + g) (x) = f (x) + g (x)

▶ zero vector : 0 = the function f0 defined by f0 (x) = 0 for all
x ∈ R.



Examples of Vector Spaces over R, Cont’d

Example 4. V = {vibrational modes of a stretched string}
▶ scalar multiplication : changing the amplitude of vibrations by

a factor |λ| and also reversing the phase of a vibration if
λ < 0.

▶ vector addition: superimposing vibrational modes (like
harmonics)

▶ zero vector : 0 = the string at rest



Examples of Vector Spaces over R, Cont’d

Example 5. V = {polynomials of degree n}
▶ scalar multiplication :

λ (anx
n + · · ·+ a1x + a0) = λanx

n + · · ·+ λa1x + λa0
▶ vector addition :

(anx
n+· · ·+a0)+(bnx

n+· · ·+b0) = (an+bn)x
n+· · ·+(a0+b0)

▶ zero vector : the zero polynomial (all coefficients = 0).



Working with General Vector Spaces

From now on we shall think of the vector space Rn as a special
case of these more general vector spaces over R.

Yet, Rn shall remain fundamental, since it will continue to provide
the concrete computational platform for general linear algebra.

I will show you how computations for general vector spaces are
carried out a little latter in this lecture.
First, however, I want to show how that the definitions and
structural results we had the vector space Rn extend to these more
general vector spaces by simply replacing the vector space Rn

with a general vector space V over R.



Revised Definitions

Definition
A subspace of a general vector space V is a subset W ⊂ V that is
closed under both the operations of scalar multiplication and
vector addition:

λ ∈ R,w ∈ w =⇒ λw ∈W

w1,w2 ∈W =⇒ w1 +w2 ∈W

Definition
The span of a set of vectors v1, . . . , vk in a general vector space V
is the subspace of V generated by these vectors:

span (v1, . . . , vk) ≡ {c1v1 + · · ·+ ckvk | c1, . . . ck ∈ R}



Definition
A set of vectors {v1, . . . , vk} in a general vector space V are
linearly independent if

x1v1 + · · ·+ xkvk = 0V ⇐⇒ x1 = 0, . . . , xk = 0

Definition
A basis for a subspace W of a general vector space V is a set of
vectors {w1, . . . ,wk} such that

▶ W = span (w1, . . . ,wk)

▶ {w1, . . . ,wk} are linearly independent



Theorem
▶ Every vector space has a basis.

▶ Every basis for a vector space has the same number of vectors

Definition
The dimension of a vector space V is the number of vectors in
any basis for V .



Definition
A linear transformation between two vector spaces V and W is a
function T : V →W such that

T (λv) = λT (v)

T (v1 + v2) = T (v1) + T (v2)

Definition
The range of a linear transformation T : V →W is the subspace
of W defined by

Range(T ) ≡ {w ∈W | w = T (v) for some v ∈ V }

Definition
The kernel of a linear transformation T : V →W is the subspace
of V defined by

Kernel(T ) = {v ∈ V | T (v) = 0V }



Vector Spaces Isomorphisms

Definition
A linear transformation T : V →W is an isomorphism if there
exists a linear transformation T−1 : W → V such that

T−1 (T (v)) = v , ∀v ∈ V ;

T
(
T−1 (w)

)
= w , ∀w ∈W

Theorem
A linear transformation T : V →W is an isomorphism if and only
if

(i) Range(T ) = W , and

(ii) Kernel(T ) = {0V }



Finite Dimensional Vector Spaces

In this course, we restrict our attention to finite-dimensional vector
spaces.
Here is a fundamental result concerning finite dimensional vector
spaces:

Theorem
Every finite dimensional vector space V is isomorphic to some Rn.

Proof. Let B = {b1, . . . ,bn} be a basis for a vector space V .

I’ll now establish an invertible linear transformation iB : V → Rn.



Proof, Cont’d

Because B is a basis for V , every vector v ∈ V has a unique
expression as

v = c1b1 + · · ·+ cnbn (*)

For any v ∈ V , we define iB : V → Rn by

iB (c1b1 + · · ·+ cnbn) ≡ [c1, . . . , cn] ∈ Rn

(the numbers c1, . . . , cn being uniquely determined by the
expansion (*)).
Clearly, Range (iB) = Rn, since we can reach any vector
[x1, . . . , xn] ∈ Rn by applying iB to the vector
v = x1b1 + · · ·+ xnbn ∈ V



Proof, Cont’d

It is also clear that

iB (c1b1 + · · ·+ cnbn) = [0, . . . , 0] ∈ Rn =⇒ c1 = 0, . . . , cn = 0

and so
Kernel (iB) = {0V }

Since

(i) Range (iB) = Rn,

(ii) Kernel (iB) = {0V }
Thus, iB : V → Rn is an isomorphism and so V and Rn are
isomorphic.

.



Coordinatizing General Vector Spaces

Unlike Rn which comes equipped with a natural basis

E = {[1, 0, 0, . . . , 0, 0], [0, 1, 0, . . . , 0, 0], . . . , [0, 0, 0, . . . , 0, 1]}

(the standard basis for Rn), general vector spaces usually do not
such an obvious basis.

Nevertheless, bases are vital to doing calculations in a general
vector space.

However, once one has a basis B = {b1, . . . ,bn} for a general
vector space V , the isomorphism

iB : V → Rn; iB (c1b1 + · · ·+ cnbn) ≡ [c1, . . . , cn]

provides unique numerical coordinates for every vector v ∈ V .



The Calculation Scheme for General Vector Spaces

Given a general vector space V with basis B = {b1, . . . ,bn}, one
carries out calculations by using the isomorphism iB : V → Rn to
translate questions about vectors, subspaces, etc. in V to
questions about vectors, subspaces, etc. in Rn (our fundamental
calculational platform).
Then when one knows the answers to the questions in Rn, one can
use the inverse linear transformation i−1

B : Rn → V to recover the
corresponding answer in the context of vectors, subspaces, etc. in
V .

computation in V iB−−−−→ computation in Rn

↓
answer in V i−1

B←−−−
answer in Rn



Application: Solutions of Homogeneous Linear Differential
Equations

We’ve seen that the set of functions on the real line can be given
the structure of a vector space over R.
I’ll now show you how results from Math 2233 Differential
Equations can be understood linear algebraically.
Let C∞ (R) be the set of differentiable functions on the real line.
C∞ (R) together with the operations

(λf ) (x) = λf (x)

(f + g) (x) = f (x) + g (x)

satisfies the axioms of a generalized vector space.



Application: C∞(R), Cont’d

Consider the derivative operator d
dx . It sends functions in C∞ (R)

to functions in C∞ (R). Moreover, it is compatible with the
operations of scalar multiplication and vector addition:

d

dx
(λf ) = λ

df

dx
if λ ∈ R

d

dx
(f + g) =

df

dx
+

dg

dx

Thus,
d

dx
: C∞ (R)→ C∞ (R)

is actually a linear transformation.
Similarly, all higher derivatives are also linear transformations from
C∞ (R) to C∞ (R) .



Now consider the differential equation

d2f

dx2
= 0

In linear algebraic language, finding the solutions of d2f
dx2

= 0 is

equivalent to finding the kernel of the linear transformation d2

dx2

ker

(
d2

dx2

)
=

{
f ∈ C∞(R) | d2

dx2
f = 0

}
In Math 2233 (or even Calculus 1), one finds that the general
solution of this differential equation is

f (x) = c1 + c2x , c1, c2 ∈ R



Thus,

d2f

dx2
= 0 ⇒ f (x) = c1 · 1 + c2 · x

Linear algebraically, we can interpret this result as saying the

subspace ker
(

d2

dx2

)
is generated by two functions f1 (x) = 1 and

f2 (x) = x .



In fact, f1 (x) = 1 and f2 (x) = x , are linearly independent, and so

provide a basis for ker
(

d2

dx2

)
.

Indeed, the Wronkskian Condition

0 ̸= W [f1, f2] (x) = f1 (x)
df2
dx

(x)−
(
df1
dx

(x)

)
f2 (x)

that one encounters in Math 2233, is just the differential equations
method for checking that two functions are linearly independent.
For if the Wronskian condition does not hold

0 = W [f1, f2] = f1 (x)
df2
dx

(x)−
(
df1
dx

(x)

)
f2 (x) = 0

we get a first order ordinary differential equation for f2(x) whose
solution is

f2 (x) = λf1 (x) for some λ ∈ R
and this in turn implies that

λf1 (x)− f2 (x) = 0

and so the two solutions would not be linearly independent (and so
would not provide a basis for the solution set).


