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Agenda:

1. Fundamental Theorem of Invertible Matrices

2. Determinants of n × n Matrices; n ≤ 3

3. Recursive Formula for Determinants

4. Determinants as Sums Over Permutations

5. Properties of Determinants



The Fundamental Theorem of Invertible Matrices

Recall the following theorem which shows the many connections
between various problems we have considered.

Theorem
Let A be an n × n matrix. The following statements are equivalent
(i.e., if any one of these statements is true, then all are true).

(a) A−1 exists.

(b) Every linear system Ax = b has a unique solution.

(c) Ax = 0 has only the trivial solution x = 0.

(d) The R.R.E.F. of A is the n × n identity matrix.

(e) The rank of A is n.

Today we’ll add a new item to this list of equivalent situations.

(f) det (A) ̸= 0



The Determinant Function for Small Matrices

The proof of the original theorem was based on connections arising
from the common row reduction algorithm by which the objects in
(a) – (e) can be computed.
The new statement (f) will based instead on a particular
polynomial function of the entries of a matrix A, the so-called
determinant function

det : {n × n matrices } −→ R

In the next set of slides, I’ll show how, for small n, one can define a
function that tests for invertibility.
We’ll then generalize the construction of the determinant function
for arbitary square matrices.



The Determinant of a 1× 1 matrix

Consider a 1× 1 matrix A = [a]
Such a matrix is invertible if and only if a ̸= 0;

AB = I ⇐⇒ [a][b] = [ab] = [1] ⇐⇒ b = 1/a

Thus, if we thus define

det([a]) ≡ a

then we have

det([a]) ̸= 0 =⇒ [a] is invertible

as our first example of statement (f) in the revised theorem.



The Determinant of a 2× 2 Matrix

Let

A =

[
a b
c d

]
From the Fundamental Theorem

A−1 exists ⇔ R.R.E .F . (A) = I

Let’s see what this requires of the entries a, b, c , d :



The Determinant of a 2× 2 Matrix, Cont’d

[
a b
c d

]
R1 →

1

a
R1

−−−−−−−→

[
1 b

a
c d

]
[
1 b

a
c d

]
R2 → R2 − cR1−−−−−−−−−−→

[
1 b

a

0 d − cb
a

]
[
1 b

a

0 d − cb
a

]
R2 → aR2−−−−−−→

[
1 b

a
0 ad − bc

]
The next step would be to multiply the second row by 1

ad−bc so
that its pivot becomes 1. However, we can’t do that if
ad − bc = 0 (we can’t divide by 0). Thus,

A =

[
a b
c d

]
can be row reduced to I only if ad − bc ̸= 0



The Determinant of a 2× 2 Matrix, Cont’d

Thus, if

det

([
a b
c d

])
≡ ad − bc

then

det

([
a b
c d

])
̸= 0 ⇒

[
a b
c d

]−1

exists

and we have another example of statement (f)



The Determinant of a 3× 3 Matrix

Now consider

A =

 a b c
d e f
g h i


A similar, but much longer, row reducibility argument shows that if

det (A) ≡ a (ei − fh)− b (di − fg) + c (dh − eg)

then
det (A) ̸= 0 ⇒ A−1 exists



Determinants of Large Matrices

For larger matrices, similar row reduction computations become
too unwieldy to identify corresponding determinant functions.

So instead we’ll try to identify a pattern we find in the cases
n = 1, 2, 3., and then generalize that pattern.



Matrix Minors and Determinants

Definition
Let A be an n × n matrix. The (ij)th-minor of A is the
(n − 1)× (n − 1) matrix obtained by removing the i th row and j th

column of A.

Let us use the notation Mij (A) to indicate the (ij)th-minor of a
matrix A. E.g., if

A =

 a b c
d e f
g h i


M11 =

[
e f
h i

]
, M12 =

[
d f
g i

]
, M13 =

[
d e
g h

]
Since A is 3× 3

det (A) ≡ a (ei − fh)− b (di − fg) + c (dh − eg)

= a det (M11)− b det (M12) + c det (M13)

Thus, we can express det (A) as a certain linear combination of the
determinants of its minors :



This also works for 2× 2 matrices

det

[
a b
c d

]
≡ ad − bc

= a det ([d ])− b det ([c])

= a det (M11)− b det (M12)



This generalizes as follows

Definition
Let

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann


be an n × n matrix and let Mij = Mij (A), i , j = 1, . . . n, denote its

(ij)th-minors. Then

det (A) ≡ a11 det (M11)−a12 det (M12)+· · ·+(−1)1+n a1n det (M1n)



Example

Let

A =


1 0 2 0
1 0 0 1
0 1 1 0
1 0 2 1


Compute det (A) .

det (A) = a11 det (M11)− a12 det (M12)

+a13 det (M13)− a14 det (M14)

= (1) det

 0 0 1
1 1 0
0 2 1

− (0) det

 1 0 1
0 1 0
1 2 1


+(2) det

 1 0 1
0 1 0
1 0 1

− (0) det

 1 0 0
0 1 1
1 0 2





The Cofactor Expansion Formulas for det (A)

We’ll complete this calculation in a minute, but first let me give an
even more general rule.

Theorem
Let A be an n × n matrix and let Mij (A), i , j = 1, . . . n, denote its

(ij)th-minors. Then

det (A) ≡
n∑

j=1

aij (−1)i+j det (Mij (A)) for each i = 1, . . . , n

and/or

det (A) ≡
n∑

i=1

aij (−1)i+j det (Mij (A)) for each j = 1, . . . , n



Cofactors: Notation and Nomenclature
The numbers

C (A)ij ≡ (−1)i+j det (Mij (A)) ≡ the (ij)th -cofactor of A

are called cofactors of A. Note that an n× n matrix has a total of
n2 cofactors (one for each ordered pair of indices i , j).

The first formula of the theorem

det (A) ≡
n∑

j=1

aij (−1)i+j det (Mij (A)) for each i = 1, . . . , n (1)

is referred to as the cofactor expansion of det (A) along the i th

row. The second formula of the theorem

det (A) ≡
n∑

i=1

aij (−1)i+j det (Mij (A)) for each j = 1, . . . , n (2)

is referred to as the cofactor expansion of det (A) along the j th

column.
Theorem =⇒ No matter which row or column we use to
compute det (A), we’ll get the same result.



Let’s now use the more general cofactor expansions to complete
the calculation of

A =


1 0 2 0
1 0 0 1
0 1 1 0
1 0 2 1


So far we have, from a cofactor expansion along the first row,

det (A) = (1) det

 0 0 1
1 1 0
0 2 1

− 0 + (2) det

 1 0 1
0 1 0
1 0 1

− 0



Now

det

 0 0 1
1 1 0
0 2 1

 = (0) det

(
1 0
2 1

)
− (0) det

(
1 0
0 1

)

+(1) det

(
1 1
0 2

)
= 0 + 0 + (1) ((1) (2)− (1) (0))

= 2

where we have applied a cofactor expansion of the first row.



To compute

det

 1 0 1
0 1 0
1 0 1


the simplest thing would be do a cofactor expansion along the
second column (or second row) - because the first and last terms
of the expansion will have 0 as a factor.

det

 1 0 1
0 1 0
1 0 1

 = 0 + (1) (−1)2+2 det

(
1 1
1 1

)
+ 0

= (1) (1) (1− 1)

= 0



Thus,

det (A) = (1) det

 0 0 1
1 1 0
0 2 1

+ (2) det

 1 0 1
0 1 0
1 0 1


= (1) (2) + (2) (0)

= 2

Soon we’ll develop more efficient ways of calculating determinants.

But before doing that let me give another formula for the
determinant that displays some of its most notable properties as
function manifest.



Digression: Permutations of n

Definition
A permutation of n is a listing of the numbers 1, 2, . . . , n in a
particular order. The set of all permutations of n will be denoted
by Sn.

For example, the permutations of 3 are

S3 ≡ {[1, 2, 3] , [1, 3, 2] , [2, 1, 3] , [2, 3, 1] , [3, 1, 2] , [3, 2, 1]}

Note that the particular permutation [1, 2, 3, . . . , n] is just the
standard ordering of the numbers 1 through n.

Definition
The sign (or parity) of a permutation σ = [σ1, . . . , σn] is (−1)s ,
where s is the number of pairs (σi , σj) where i < j but σi > σj .



Example: Permutations of [1, 2, 3]

For [1, 2, 3] the possible pairs are {1, 2} , {1, 3} , {2, 3}

sgn ([1, 2, 3]) = (−1)0+0+0 = 1

sgn ([1, 3, 2]) = (−1)0+0+1 = −1

sgn ([2, 1, 3]) = (−1)1+0+0 = −1

sgn ([2, 3, 1]) = (−1)1+1+0 = 1

sgn ([3, 1, 2]) = (−1)0+1+1 = 1

sgn ([3, 2, 1]) = (−1)1+1+1 = −1



Combinatorial Formula for det (A)

Here is a formula for the determininant of an n× n matrix in terms
of permutations of [1, 2, . . . , n]

Theorem
Let A be an n × n matrix with entries ai ,j . Then

det (A) =
∑

permutations
σ

sgn (σ) a1,σ1a2,σ2 · · · an,σn



Example, Cont’d
Consider

A =

 a b c
d e f
g h i


We have

S3 ≡ {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}

So

det (A) = sgn ([1, 2, 3]) a11a22a23 + sgn ([1, 3, 2]) a11a23a32

+sgn ([2, 1, 3]) a12a21a33 + sgn ([2, 3, 1]) a12a23a3,1

+sgn ([3, 1, 2]) a13a21a32 + sgn ([3, 2, 1]) a13a22a31

= aei − afg − bdi + bfg + cdh − ceg

= a (ei − fg)− b(di − fg) + c(dh − eg)

= a det (M11)− b det (M12) + c det (M13)



Corollary (Properties of Determinants)

Let A be an n × n matrix.

▶ The determinant of an n × n matrix A is a polynomial of
degree n in the entries of A.

▶ In general, this polynomial has n! terms

▶ Each term of this polynomial has exactly n factors; with each
factor coming from a distinct row and distinct column of A.

These statements all follow from the formula

det (A) =
∑

permutations
σ

sgn (σ) a1,σ1a2,σ2 · · · an,σn



The Complexity of Determinant Functions

Note that the polynomial corresponding to the determinant of a
5× 5 matrix is going to involve 5! = 120 individual terms.

For a 6× 6 matrix, there will be 6! = 720 different terms.

So the computation of determinants gets very strenuous, very
quickly even for relatively small matrices.

In the next lecture, we will develop another, usually more
expedient, way of computing determinants.


