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Agenda:

1. The Eigenvalue-Eigenvector Problem

2. Step 1: Determining the Eigenvalues of a Matrix

3. Step 2: Determining the Eigenspace for Each Eigenvalue of a
Matrix



Eigenvalues and Eigenvectors

Definition
Let A be an n × n matrix. A number λ is called an eigenvalue of
A if there is a non-zero vector v ∈ Rn such that

Av = λv

We then say v is an eigenvector of A with eigenvalue λ.

Example

Consider

A =

[
3 1
1 3

]
, v =

[
1
1

]
We have

Av =

[
3 1
1 3

] [
1
1

]
=

[
3 + 1
1 + 3

]
=

[
4
4

]
= 4v

and so v is an eigenvector of A with eigenvalue 4.
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N.B. If v is an eigenvector of A with eigenvalue λ then the action
of multiplying v by the matrix A is equivalent to scalar multiplying
v by λ

(which is much simpler that regular matrix
multiplication).

Definition
Let λ be an eigenvalue of an n × n matrix A. The λ-eigenspace
of A is

Eλ ≡ {v ∈ Rn | Av = λv}
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of multiplying v by the matrix A is equivalent to scalar multiplying
v by λ (which is much simpler that regular matrix
multiplication).

Definition
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Reformulation of the Eigenvalue/Eigenvector Condition

If we rewrite the eigenvector/eigenvalue condition

Av = λv

as

0 = Av − λv

= Av − λIv

= (A− λI) v

we see that finding the eigenvectors with eigenvalue λ is equivalent
to solving the homogeneous linear system

(A− λI) x = 0
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In what follows the “λ-shifted matrix”

Aλ ≡ A− λI

will be the fundamental calculational object.
For example, the λ-eigenspace of an n× n matrix A can be written
as

Eλ ≡ {v ∈ Rn | Av = λv}
= {v ∈ Rn | (A− λI) v = 0}
≡ NullSp (A− λI)

= NullSp (Aλ)
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Lemma
If λ is an eigenvalue of an n× n matrix A, then Eλ is a subspace of
Rn.

This follows already from the observation that Eλ = NullSp (Aλ).
But I’ll, anyway, give a direct proof.
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Proof of Lemma

Closure under Scalar Multiplication:
Suppose k ∈ R , v ∈ Eλ. Then

A (kv) = kA (v)

= k (λv)

= λ (kv)

⇒ kv ∈ Eλ

Closure under Vector Addition:
Suppose v1, v2 ∈ Eλ. Then

A (v1 + v2) = Av1 + Av2

= λv1 + λv2

= λ (v1 + v2)

⇒ v1 + v2 ∈ Eλ
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The Eigenvalue-Eigenvector Problem

Definition
Let A be an n× n matrix. The Eigenvalue-Eigenvector Problem
for A is the problem of finding all the eigenvalues of A and their
associated eigenspaces.

Solving an Eigenvalue-Eigenvector Problem

Step 1: Find the eigenvalues of A

Step 2: For each eigenvalue λ find the solutions of

(A− λI) x = 0

(by row-reducing (A− λI) to R.R.E.F.)
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Determining the Eigenvalues of a Matrix

Suppose λ is an eigenvalue of A. Then, by definition, there is a
vector v ̸= 0 such that

Av = λv

Equivalently, v is a non-zero solution of

(A− λI) x = 0 (1)

▶ Note that x = 0 is always a solution of (1). We call the
solution x = 0 the trivial solution of (1).

▶ However, eigenvectors are, by definition, non-trivial solutions
of (1).

▶ The real question is thus: when do we have solutions of (1)
other than x = 0.
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Finding Nontrivial Solutions

Recall the Fundamental Theorem of Invertible Matrices:

Theorem
Suppose A is an n × n matrix. Then the following statements are
equivalent:

(i) A has a matrix inverse.

(ii) Every linear system of the form Ax = b has a unique solution.

(iii) x = 0 is the unique solution to Ax = 0.

(iv) R.R.E .F . (A) = I

(v) det (A) ̸= 0

By equivalent statements we mean either all statements about A
are true or all statements are false.
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Finding Nontrivial Solutions, Cont’d

Negating both statements (iii) and (v),
Statement (iii) → Ax = 0 has solutions other than x = 0
Statement (v) → det (A) = 0
We conclude

Corollary

A homogeneous linear system Ax = 0 has nontrivial solutions

(i.e.
solutions other than x = 0) if and only if

det (A) = 0
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The Characteristic Equation for a matrix A
Thus, if a matrix A is to have an eigenvector v with eigenvalue λ

(i.e., a nontrivial solution of (A− λI) x = 0) then we must have

det (A− λI) = 0 (*)

Since the determinant of a matrix is a polynomial in entries of the
matrix, the condition (*) can be regarded as a polynomial equation
for the eigenvalue λ.

Definition
Let A be an n × n matrix. Then

pA (λ) ≡ det (A− λI)

is a polynomial of degree n in the parameter λ. pA (λ) is called the
characteristic polynomial of A and the polynomial equation

pA (λ) = 0

is called the characteristic equation of A.
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Determining Eigenvalues, Cont’d

Next we recall that since det (M) is a polynomial of degree n in
the entries of M. In fact, the polynomial

det (A− λI)

is always a polynomial of degree n in λ.

Definition
Let A be an n × n matrix. The characteristic polynomial of A is
the polynomial

pA (λ) ≡ det (A− λI)

The Corollary then tells us that if λ is eigenvalue of A, then λ is a
root (i.e. a solution) of pA (λ) = 0.
We thus find the eigenvalues of A by finding all the roots of
pA (λ) = 0.
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Example

Determine the eigenvalues of A =

[
1 3
3 1

]
.

We have

pA (λ) = det (A− λI) = det

([
1 3
3 1

]
− λ

[
1 0
0 1

])
= det

([
1− λ 3
3 1− λ

])
= (1− λ)2 − 9

= λ2 − 2λ− 8

= (λ− 4) (λ+ 2)

Thus,
pA (λ) = 0 ⇒ λ = 4,−2

Therefore, the eigenvalues of A are 4 and −2.
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Digression: Solving Polynomial Equations

The Fundamental Theorem of Algebra is the following statement:

Theorem
Let p (x) be a polynomial of degree n. Then

▶ p (x) has a complete factorization in terms of linear
polynomials

p (x) = a (x − r1) (x − r2) · · · (x − rn)

where, in general, r1, . . . , rn are complex numbers.

▶ r ∈ C is a root of p (x) = 0, if and only if (x − r) is a factor
of p (x).

Thus, we solve a polynomial equation p (x) = 0 by factorizing
p (x).
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Right away we see λ = (λ− 0) divides pA (λ); and so λ = 0 must
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To find all the solutions, we must complete the factorization of
pA (λ)

pA (λ) = −λ
(
λ2 − λ− 2

)
= −λ (λ− 2) (λ+ 1)

Thus the roots of pA (λ) are 0, 2, and −1.

We conclude that the eigenvalues of A are 0, 2 and −1.
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Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue λ of the given matrix.

This just amounts to solving the homogeneous linear systems

(A− λI) x = 0

This is done in the usual fashion.

▶ Row reduce (A− λI) to R.R.E.F.

▶ Identify the fixed variables and the free variables of the
solution

▶ Use the R.R.E.F. to get equations that express the fixed
variables in terms of the free variables

▶ Write down a typical solution vector

▶ Expand the solution vector in terms of the free parameters

▶ Grab the basis vectors for the solution set. (These will be your
basic eigenvectors for the given eigenvalue)
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The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue λ of the given matrix.

This just amounts to solving the homogeneous linear systems

(A− λI) x = 0

This is done in the usual fashion.

▶ Row reduce (A− λI) to R.R.E.F.

▶ Identify the fixed variables and the free variables of the
solution

▶ Use the R.R.E.F. to get equations that express the fixed
variables in terms of the free variables

▶ Write down a typical solution vector

▶ Expand the solution vector in terms of the free parameters

▶ Grab the basis vectors for the solution set. (These will be your
basic eigenvectors for the given eigenvalue)


