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Eigenvalues and Eigenvectors
Definition
Let A be an n X n matrix. A number X is called an eigenvalue of
A if there is a non-zero vector v € R"” such that
Av = \v

We then say v is an eigenvector of A with eigenvalue \.

Example
Consider

We have
131 1 [ 3+1 | |4/
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and so v is an eigenvector of A with eigenvalue 4.



N.B. If v is an eigenvector of A with eigenvalue X then the action
of multiplying v by the matrix A is equivalent to scalar multiplying
v by A



N.B. If v is an eigenvector of A with eigenvalue X then the action
of multiplying v by the matrix A is equivalent to scalar multiplying
v by A (which is much simpler that regular matrix
multiplication).



N.B. If v is an eigenvector of A with eigenvalue X then the action
of multiplying v by the matrix A is equivalent to scalar multiplying
v by A (which is much simpler that regular matrix
multiplication).

Definition

Let A be an eigenvalue of an n x n matrix A. The \-eigenspace

of A'is
Eyx={veR"|Av=)\v}
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In what follows the “A-shifted matrix”
A=A -l

will be the fundamental calculational object.
For example, the A-eigenspace of an n x n matrix A can be written
as

E, = {veR"|Av=)\v}
= {veR"|(A-Al)v=0}
= NullSp (A — Al)
= NullSp(A))
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Lemma
If X is an eigenvalue of an n x n matrix A, then E) is a subspace of
R".

This follows already from the observation that Ey = NullSp (Ay).
But I'll, anyway, give a direct proof.
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Proof of Lemma

Closure under Scalar Multiplication:
Suppose k € R, v € Ey. Then

A(kv) = kA(v)

= k
= A
= kv € E)

Closure under Vector Addition:
Suppose vi,vo € Ey. Then

A (Vl + V2) = Av; + Avy
= )\Vl + /\V2
= A (V1 + V2)



Proof of Lemma

Closure under Scalar Multiplication:
Suppose k € R, v € Ey. Then

A(kv) = kA(v)

= k
= A
= kv € E)

Closure under Vector Addition:
Suppose vi,vo € Ey. Then

A(vi+vy) = Avi+Av,
= )\Vl + /\V2
= A(vi+wv2)
= vi+ v € E)
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The Eigenvalue-Eigenvector Problem

Definition

Let A be an n x n matrix. The Eigenvalue-Eigenvector Problem
for A is the problem of finding all the eigenvalues of A and their
associated eigenspaces.

Solving an Eigenvalue-Eigenvector Problem
Step 1: Find the eigenvalues of A

Step 2: For each eigenvalue A find the solutions of
(A—X)x=0

(by row-reducing (A — Al) to R.R.E.F.)
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Determining the Eigenvalues of a Matrix

Suppose A is an eigenvalue of A. Then, by definition, there is a

vector v # 0 such that
Av = v

Equivalently, v is a non-zero solution of
(A—A)x=0 (1)

» Note that x = 0 is always a solution of (1). We call the
solution x = 0 the trivial solution of (1).

> However, eigenvectors are, by definition, non-trivial solutions
of (1).

» The real question is thus: when do we have solutions of (1)
other than x = 0.
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Finding Nontrivial Solutions, Cont'd

Negating both statements (iii) and (v),

Statement (i) — Ax = 0 has solutions other than x =0
Statement (v) — det(A)=0

We conclude

Corollary
A homogeneous linear system Ax = 0 has nontrivial solutions (i.e.
solutions other than x = 0) if and only if

det (A) =0
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The Characteristic Equation for a matrix A

Thus, if a matrix A is to have an eigenvector v with eigenvalue A
(i.e., a nontrivial solution of (A — Al)x = 0) then we must have

det (A — Al) =0 (*)

Since the determinant of a matrix is a polynomial in entries of the
matrix, the condition (*) can be regarded as a polynomial equation
for the eigenvalue A.

Definition
Let A be an n x n matrix. Then

pa () = det (A —Al)

is a polynomial of degree n in the parameter A. pa () is called the
characteristic polynomial of A and the polynomial equation

pa(A) =0

is called the characteristic equation of A.
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Finding the Eigenvalues of an n x n matrix A

The eigenvalues of an n x n matrix A can be found by calculating
its characteristic polynomial

pa () = det (A —Al)
and then solving the characteristic equation
pa(A) =0

for A.
In other words, the solutions of the characteristic equation are
exactly the eigenvalues of A



Determining Eigenvalues, Cont'd



Determining Eigenvalues, Cont'd

Next we recall that since det (M) is a polynomial of degree n in
the entries of M.



Determining Eigenvalues, Cont'd

Next we recall that since det (M) is a polynomial of degree n in
the entries of M. In fact, the polynomial

det (A — Al

is always a polynomial of degree nin \.



Determining Eigenvalues, Cont'd

Next we recall that since det (M) is a polynomial of degree n in
the entries of M. In fact, the polynomial

det (A — Al

is always a polynomial of degree nin \.

Definition
Let A be an n X n matrix.



Determining Eigenvalues, Cont'd

Next we recall that since det (M) is a polynomial of degree n in
the entries of M. In fact, the polynomial

det (A — Al

is always a polynomial of degree nin \.
Definition
Let A be an n x n matrix. The characteristic polynomial of A is

the polynomial
pa (A) =det (A — M)



Determining Eigenvalues, Cont'd

Next we recall that since det (M) is a polynomial of degree n in
the entries of M. In fact, the polynomial

det (A — Al

is always a polynomial of degree nin \.
Definition
Let A be an n x n matrix. The characteristic polynomial of A is

the polynomial
pa (A) =det (A — M)

The Corollary then tells us that if A is eigenvalue of A, then X is a
root (i.e. a solution) of pa (A) = 0.



Determining Eigenvalues, Cont'd

Next we recall that since det (M) is a polynomial of degree n in
the entries of M. In fact, the polynomial

det (A — Al

is always a polynomial of degree nin \.
Definition
Let A be an n x n matrix. The characteristic polynomial of A is

the polynomial
pa (A) =det (A — M)

The Corollary then tells us that if A is eigenvalue of A, then X is a
root (i.e. a solution) of pa (A) = 0.
We thus find the eigenvalues of A by finding all the roots of

pa (A) =0.
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Determine the eigenvalues of A = [ 3

We have

pa(A) = det(A—)\I):detq
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Determine the eigenvalues of A = [ 31

We have

pa(\) = det(A — Al :det<[§

(152

= (1-X1)?%-9
= N-2)\-38
= A—4)(A+2)

Thus,

|



Example

Determine the eigenvalues of A = [ :1)) :;’ ]
We have

pa(\) = det(A—AI)zdet([é ﬂ—x[

(152

= (1-X)*-9
= XN -2\-38
= A—4)(1+2)
Thus,
pA()\):O = )\:4,—2

Therefore, the eigenvalues of A are 4 and —2.
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Digression: Solving Polynomial Equations

The Fundamental Theorem of Algebra is the following statement:
Theorem
Let p (x) be a polynomial of degree n. Then

» p(x) has a complete factorization in terms of linear
polynomials

p(x)=a(x—n)(x—r) - (x—r)

where, in general, ri, ..., r, are complex numbers.
» re Cisaroot of p(x) =0, if and only if (x — r) is a factor
of p(x).
Thus, we solve a polynomial equation p (x) = 0 by factorizing
p (x)-
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Find the eigenvalues of A =

= O
= O R
O = =

We have

1-A 1 1
pa(A) = det 0 0—-Xx 1
1 1 0-AX

_ _o+(—A)det<1;A _1)\>—(1)det<11)‘ 1)

= NX1-N+r-(1-))+1
= A+ 42)

Right away we see A = (A — 0) divides pa (\); and so A = 0 must
be a root.
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To find all the solutions, we must complete the factorization of
pa (A)

pa(A) = —A(N-X-2)
= —A(A=-2)(A+1)

Thus the roots of pa (A) are 0, 2, and —1.

We conclude that the eigenvalues of A are 0, 2 and —1.



Step 2: Finding the Eigenvectors for each Eigenvalue



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems

(A—X)x=0



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems
(A—X)x=0

This is done in the usual fashion.



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems
(A—X)x=0

This is done in the usual fashion.
» Row reduce (A — Al) to R.R.E.F.



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems
(A—X)x=0

This is done in the usual fashion.
» Row reduce (A — Al) to R.R.E.F.

» Identify the fixed variables and the free variables of the
solution



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems
(A—X)x=0

This is done in the usual fashion.
» Row reduce (A — Al) to R.R.E.F.
» Identify the fixed variables and the free variables of the
solution

» Use the R.R.E.F. to get equations that express the fixed
variables in terms of the free variables



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems
(A—X)x=0

This is done in the usual fashion.
» Row reduce (A — Al) to R.R.E.F.
» Identify the fixed variables and the free variables of the
solution
» Use the R.R.E.F. to get equations that express the fixed
variables in terms of the free variables

» Write down a typical solution vector



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems
(A—X)x=0

This is done in the usual fashion.

» Row reduce (A — Al) to R.R.E.F.

» Identify the fixed variables and the free variables of the
solution

» Use the R.R.E.F. to get equations that express the fixed
variables in terms of the free variables

» Write down a typical solution vector

» Expand the solution vector in terms of the free parameters



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems
(A—X)x=0

This is done in the usual fashion.
» Row reduce (A — Al) to R.R.E.F.

» Identify the fixed variables and the free variables of the
solution

» Use the R.R.E.F. to get equations that express the fixed
variables in terms of the free variables

» Write down a typical solution vector

v

Expand the solution vector in terms of the free parameters

» Grab the basis vectors for the solution set.



Step 2: Finding the Eigenvectors for each Eigenvalue

The last step of the Eigenvalue-Eigenvector Problem is to
determine the eigenspace for each eigenvalue X\ of the given matrix.

This just amounts to solving the homogeneous linear systems
(A—X)x=0

This is done in the usual fashion.
» Row reduce (A — Al) to R.R.E.F.

» Identify the fixed variables and the free variables of the
solution

» Use the R.R.E.F. to get equations that express the fixed
variables in terms of the free variables

» Write down a typical solution vector

v

Expand the solution vector in terms of the free parameters

» Grab the basis vectors for the solution set. (These will be your
basic eigenvectors for the given eigenvalue)



