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The Eigenvalue/Eigenvector Problem

Given an n × n matrix A, find all the numbers λ such that there is
a non-zero vectors v such that

Av = λv (1)

When we find such a solution λ, v to the eigenvalue/eigenvector
problem, λ is called an eigenvalue of A and v is called an
eigenvector of A.

Note that the zero vector 0 is always a solution of (1)

However, the solution v = 0 is irrelevant to the EV/EV Problem.



The EV/EV Condition as a Homogeneous Linear System

The equation
Av = λv (1)

is equivalent to the homogeneous linear system

(A− λI) x = 0 (2)

with (A− λI) as its coefficient matrix.
Since we are looking for non-zero solutions, we need (2) to have
more than one solution; and this, in turn requires the coefficient
matrix (A− λI) to satisfy

det (A− λI) = 0 (3)

(Recall det (M) ̸= 0 ⇐⇒ Mx = 0 has only one solution,
x = 0).



The Characteristic Polynomial and Characteristic Equation

The determinant of an n × n matrix is always a homogeneous
polynomial degree n in the entries of the matrix. For this reason,

pA (λ) ≡ det (A− λI)

is a polynomial of degree n in λ.
We call pA (λ) the characteristic polynomial of A.

Thus, a necessary condition for solving the EV/EV Problem is that
λ satisfy the polynomial equation

pA (λ) = 0 (1)

This equation is called the characteristic equation of the matrix
A.



Some basic facts about polynomial equations

▶ If p (x) is a polynomial of degree n then there are at most n
solutions of p (x) = 0.

▶ Every polynomial of degree n has a factorization of the form

p (x) = a (x − r1) (x − r2) · · · (x − rn) , a, r1, . . . , rn ∈ C
(4)

▶ x = r is a solution of p (x) = 0 if and only if (x − r) occurs as
the factor on the right hand side of (4)

Thus, a good strategy for solving

pA (λ) = 0

would be to find the factorization

pA (λ) = a (λ− r1) · · · (λ− rn)

(the solutions will then be λ = r1, r2, . . . , rn).



Example 1

Consider

A =

 1 1 0
0 2 1
0 0 1


Find all the eigenvalues of A. We need to solve

0 = pA (λ)

≡ det (A− λI)

= det

 1− λ 1 0
0 2− λ 1
0 0 1− λ


= (1− λ) (2− λ) (1− λ)

The only solutions of this equation are λ = 1 and λ = 2. And so
the eigenvalues of A are the numbers 1 and 2.



Roots and Multiplicities

In the preceding example pA (λ) had three factors but only two
distinct eigenvalues. This turns out to be a special property of
pA (λ) for which we have some special nomenclature.

Definition
Suppose a polynomial p (x) factorizes as

p (x) = a (λ− r1)
m1 (λ− r2)

m2 · · · (λ− rk)
mk

The numbers r1, . . . , rn are called the roots of p (x) and the
integers mi , i = 1, . . . , k , are called the multiplicities of the roots
ri .



Eigenvalues and their Algebraic Multiplicities

In Linear Algebra, we use the following, more specialized,
terminolgy:

The solutions of
pA (λ) = 0

are the eigenvalues of A and the number of times (λ− r) appears
as a factor of pA (λ) is called the algebraic multiplicity of the
eigenvalue r .

We’ll soon see that there is another kind of “multiplicity”
associated with eigenvalues.



Example 1 Cont’d

Thus, in the preceding example, where we found

pA (λ) = (1− λ) (2− λ) (1− λ) = (1− λ)2 (2− λ)

we would say the matrix A has two eigenvalues:

λ = 1 with algebraic multiplicity 2

λ = 2 with algebraic multiplicity 1



Finding the Eigenvectors
Once we have found all the solutions of

0 = pA (λ) ≡ det (A− λI)

we have found the eigenvalues of A: i.e., we have solved the first
half of the eigenvalue/eigenvector problem.
The next step is to figure out for each eigenvalue λ = r of A, the
corresponding eigenvectors.
Nomenclature: The set

Er = {v ∈ Rn | Av = rv}

is called the r-eigenspace of A. Er is a subspace of Rn Indeed,

Er = NullSp (A− r I)

and so we find the eigenvectors in Er by solving

(A− r I) x = 0



Eigenvectors and Geometric Multiplicities

As a non-zero subspace of Rn, Er will contain infinitely many
vectors.

OTOH, as a subspace of Rn, it will have a finite basis.

Abusing our language a bit, when we find a basis {v1, . . . , vk} for
Er , we say that {v1, . . . , vk} for Er are the eigenvectors of A with
eigenvalue r .

Finding a basis for each non-zero Er is how the solution of the
EV/EV Problem is completed.

Nomenclature: The geometric multiplicity of an eigenvalue r is
the dimension of the r -eigenspace Er (i.e. the number of vectors in
any basis for Er ).



Summary of EV/EV Nomenclature:
Given an n × n matrix A
▶ pA (λ) = det (A− λI), the characteristic polynomial of A
▶ When pA (λ) is factorized

pA (λ) = (λ− r1)
m1 (λ− r2)

m2 · · · (λ− rk)
mk (*)

the numbers r1, . . . , rk are the eigenvalues of A
▶ For any eigenvalue ri of A

▶ the integer power mi occuring in the factorization (*) is the
algebraic multiplicity of the eigenvalue ri

▶ the subspace

Eri = NullSp (A− ri I) = {v ∈ Rn | Av = riv}

is the ri -eigenspace of A.
▶ we call any basis {v1, . . . , vℓ} for Eri the eigenvectors of A

with eigenvalue ri
▶ the number ℓ of basis vectors for Eri is called the geometric

multiplicity µi of the eigenvalue ri

µi = dim (Eri ) = Nullity (A− ri I)



Properties of Algebraic and Geometric Multiplicities

Suppose:
r1, . . . , rk are the eigenvalues of an n × n matrix A
m1, . . . ,mk are the corresponding algebraic multiplicities (mi = the
number of factors of (λ− ri ) in pA (λ))
µ1, . . . , µk are the corresponding geometric multiplities
(µi = dim (Eri ))
Then

▶
k∑

i=1

mi = n

▶
µi ≤ mi for all i



Example 1 Cont’d

Let’s now find the eigenvectors of the matrix

A =

 1 1 0
0 2 1
0 0 1


This the same matrix as before and so we already know that its
eigenvalues are λ = 1 and λ = 2.



E1 ; the 1-eigenspace of A
We have

E1 = NullSp (A− (1) I) = NullSp

 1− (1) 1 0
0 2− (1) 1
0 0 1− (1)


= NullSp

 0 1 0
0 1 1
0 0 0


= NullSp

 0 1 0
0 0 1
0 0 0


The last matrix is the R.R.E.F. of (A− (1) I). Thus, if
(A− (1) I) x = 0, we must have

x2 = 0
x3 = 0
0 = 0


and x1 is a free variable in the solution.



E1 ; the 1-eigenspace of A, Cont’d

Thus, a solution vector must have the form

x =

 x1
0
0

 = x1

 1
0
0


The eigenvector corresponding to the eigenvalue 1 is thus

v1 =

 1
0
0


Since we have only one basis vector for the 1-eigenspace, E1, the
geometric multiplicity of the eigenvalue 1 is 1.



E2 ; the 2-eigenspace of A
We need to determine

NullSp (A− (2) I) = NullSp

 1− (2) 1 0
0 2− (2) 1
0 0 1− (2)


= NullSp

 −1 1 0
0 0 1
0 0 −1


= NullSp

 1 −1 0
0 0 1
0 0 0


and so we need

x1 − x2 = 0
x3 = 0
0 = 0

 ⇒ x =

 x2
x2
0

 = x2

 1
1
0





E2 ; the 2-eigenspace of A, Cont’d

Hence, a basis vector for E2 will be

v2 =

 1
1
0


and the geometric multiplicity of the eigenvalue λ = 2 is 1.



Example 1: Summary

The matrix

A =

 1 1 0
0 2 1
0 0 1


has

pA (λ) = det (A− λI) = (1− λ)2 (2− λ)

as its characteristic polynomial and we have the following table

eigenvalue eigenvectors alg. mult. geo. mult

1


 1

0
0

 2 1

2


 1

1
0

 1 1



Example 2

Find the eigenvalues and eigenvectors of the matrix

A =

 −4 0 0
−7 2 −1
7 0 2


and then determine the algebraic and geometric multiplicities of
each eigenvalue.

pA (λ) = det

 −4− λ 0 0
−7 2− λ −1
7 0 2− λ

 = (−4− λ) (2− λ)2

We thus have 2 eigenvalues λ = −4, 2. The eigenvalue λ = −4
has algebraic multiplicity 1 (since there is 1 factor of (−4− λ) in
pA (λ)), while the eigenvalue λ = 2 has algebraic multiplicity 2
(since there are 2 factors of (2− λ) in pA (λ)).



Example 2: −4-eigenspace

NullSp (A− (−4) I) = NullSp

 0 0 0
−7 6 −1
7 0 6

 = NullSp

 1 0 6
7

0 1 5
7

0 0 0

 = span

 −6
7

−5
7
1



The vector vλ=−4 =

 −6
7

−5
7
1

 thus provides a basis for the λ = −4

eigenspace. Since the (−4)-eigenspace is 1-dimensional, the
geometric multiplicity of the eigenvalue −4 is 1.



Example 2: 2-eigenspace

NullSp (A− (2) I) = NullSp

 −6 0 0
−7 0 −1
7 0 0


= NullSp

 1 0 0
0 0 1
0 0 0


= span

 0
1
0



The vector vλ=2 =

 0
1
0

 thus provides a basis for the λ = 2

eigenspace. Since the eigenspace is 1-dimensional, the geometric
multiplicity of the eigenvalue 2 is 1.



Example 2: Summary

The matrix

A =

 −4 0 0
−7 2 −1
7 0 2


has

pA (λ) = det (A− λI) = (−4− λ) (2− λ)2

as its characteristic polynomial and we have the following table of
multiplicities

eigenvalue eigenvectors alg. mult. geo. mult

−4


 −6

7
−5

7
1

 1 1

2


 0

1
0

 2 1


