Lecture 30: Eigenvalues, Eigenvectors, and Multiplicities

Math 3013 Oklahoma State University

April 13, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. The Eigenvalue/Eigenvector Problem
- 2. Finding the Eigenvalues
- 3. Finding the Eigenvectors
- 4. Algebraic and Geometric Multiplicities

The Eigenvalue/Eigenvector Problem

Given an $n \times n$ matrix **A**, find all the numbers λ such that there is a **non-zero** vectors **v** such that

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \tag{1}$$

When we find such a solution λ , **v** to the eigenvalue/eigenvector problem, λ is called an **eigenvalue** of **A** and **v** is called an **eigenvector** of **A**.

Note that the zero vector $\mathbf{0}$ is always a solution of (1)

However, the solution $\mathbf{v} = \mathbf{0}$ is **irrelevant** to the EV/EV Problem.

The EV/EV Condition as a Homogeneous Linear System

The equation

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \tag{1}$$

is equivalent to the homogeneous linear system

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0} \tag{2}$$

with $(\mathbf{A} - \lambda \mathbf{I})$ as its coefficient matrix.

Since we are looking for non-zero solutions, we need (2) to have more than one solution; and this, in turn requires the coefficient matrix $(\mathbf{A} - \lambda \mathbf{I})$ to satisfy

$$\det \left(\mathbf{A} - \lambda \mathbf{I} \right) = 0 \tag{3}$$

(Recall det $(\mathbf{M}) \neq 0 \iff \mathbf{M}\mathbf{x} = \mathbf{0}$ has only one solution, $\mathbf{x} = \mathbf{0}$).

The Characteristic Polynomial and Characteristic Equation

The determinant of an $n \times n$ matrix is always a homogeneous polynomial degree n in the entries of the matrix. For this reason,

$$p_{\mathbf{A}}(\lambda) \equiv \det \left(\mathbf{A} - \lambda \mathbf{I} \right)$$

is a polynomial of degree *n* in λ . We call $p_{\mathbf{A}}(\lambda)$ the **characteristic polynomial** of **A**.

Thus, a necessary condition for solving the EV/EV Problem is that λ satisfy the polynomial equation

$$p_{\mathbf{A}}\left(\lambda\right) = 0 \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This equation is called the **characteristic equation** of the matrix \mathbf{A} .

Some basic facts about polynomial equations

- If p(x) is a polynomial of degree n then there are at most n solutions of p(x) = 0.
- Every polynomial of degree n has a factorization of the form

$$p(x) = a(x - r_1)(x - r_2) \cdots (x - r_n) \qquad , \qquad a, r_1, \dots, r_n \in \mathbb{C}$$
(4)

 x = r is a solution of p(x) = 0 if and only if (x - r) occurs as the factor on the right hand side of (4)

Thus, a good strategy for solving

$$p_{\mathbf{A}}(\lambda) = 0$$

would be to find the factorization

$$p_{\mathbf{A}}(\lambda) = a(\lambda - r_1) \cdots (\lambda - r_n)$$

(the solutions will then be $\lambda = r_1, r_2, \ldots, r_n$).

Example 1

Consider

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

Find all the eigenvalues of A. We need to solve

$$0 = p_{\mathbf{A}}(\lambda)$$

$$\equiv \det(\mathbf{A} - \lambda \mathbf{I})$$

$$= \det\begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{pmatrix}$$

$$= (1 - \lambda)(2 - \lambda)(1 - \lambda)$$

The only solutions of this equation are $\lambda = 1$ and $\lambda = 2$. And so the eigenvalues of **A** are the numbers 1 and 2.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Roots and Multiplicities

In the preceding example $p_{\mathbf{A}}(\lambda)$ had three factors but only two distinct eigenvalues. This turns out to be a special property of $p_{\mathbf{A}}(\lambda)$ for which we have some special nomenclature.

Definition

Suppose a polynomial p(x) factorizes as

$$p(x) = a(\lambda - r_1)^{m_1} (\lambda - r_2)^{m_2} \cdots (\lambda - r_k)^{m_k}$$

The numbers r_1, \ldots, r_n are called the **roots** of p(x) and the integers m_i , $i = 1, \ldots, k$, are called the **multiplicities** of the roots r_i .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Eigenvalues and their Algebraic Multiplicities

In Linear Algebra, we use the following, more specialized, terminolgy:

The solutions of

$$p_{\mathbf{A}}(\lambda) = 0$$

are the **eigenvalues** of **A** and the number of times $(\lambda - r)$ appears as a factor of $p_{\mathbf{A}}(\lambda)$ is called the **algebraic multiplicity** of the eigenvalue r.

We'll soon see that there is another kind of "multiplicity" associated with eigenvalues.

Thus, in the preceding example, where we found

$$p_{\mathbf{A}}(\lambda) = (1-\lambda)(2-\lambda)(1-\lambda) = (1-\lambda)^2(2-\lambda)$$

we would say the matrix **A** has two eigenvalues:

- $\lambda~=~1~$ with algebraic multiplicity 2
- $\lambda~=~2~$ with algebraic multiplicity 1

Finding the Eigenvectors

Once we have found all the solutions of

$$0 = p_{\mathbf{A}}(\lambda) \equiv \det \left(\mathbf{A} - \lambda \mathbf{I} \right)$$

we have found the eigenvalues of **A**: i.e., we have solved the first half of the eigenvalue/eigenvector problem.

The next step is to figure out for each eigenvalue $\lambda = r$ of **A**, the corresponding eigenvectors.

Nomenclature: The set

$$E_r = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{Av} = r\mathbf{v} \}$$

is called the *r*-eigenspace of **A**. E_r is a subspace of \mathbb{R}^n Indeed,

$$E_r = NullSp\left(\mathbf{A} - r\mathbf{I}
ight)$$

and so we find the eigenvectors in E_r by solving

$$\left(\mathbf{A}-r\mathbf{I}\right)\mathbf{x}=0$$

●●● Ⅲ → Ⅲ → Ⅲ → ■ → ●●●

Eigenvectors and Geometric Multiplicities

As a non-zero subspace of \mathbb{R}^n , E_r will contain **infinitely** many vectors.

OTOH, as a subspace of \mathbb{R}^n , it will have a **finite** basis.

Abusing our language a bit, when we find a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for E_r , we say that $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for E_r are **the** eigenvectors of **A** with eigenvalue r.

Finding a basis for each non-zero E_r is how the solution of the EV/EV Problem is completed.

Nomenclature: The **geometric multiplicity** of an eigenvalue r is the dimension of the r-eigenspace E_r (i.e. the number of vectors in any basis for E_r).

Summary of EV/EV Nomenclature:

Given an $n \times n$ matrix **A**

- ► $p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$, the characteristic polynomial of **A**
- When $p_{\mathbf{A}}(\lambda)$ is factorized

$$p_{\mathbf{A}}(\lambda) = (\lambda - r_1)^{m_1} (\lambda - r_2)^{m_2} \cdots (\lambda - r_k)^{m_k} \qquad (*)$$

the numbers r_1, \ldots, r_k are the **eigenvalues** of **A**

- For any eigenvalue r_i of A
 - the integer power m_i occuring in the factorization (*) is the algebraic multiplicity of the eigenvalue r_i
 - the subspace

$$E_{r_i} = NullSp\left(\mathbf{A} - r_i\mathbf{I}\right) = \{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = r_i\mathbf{v}\}$$

is the r_i -eigenspace of **A**.

- ▶ we call any basis {v₁,..., v_ℓ} for E_{r_i} the eigenvectors of A with eigenvalue r_i
- the number *l* of basis vectors for *E_{r_i}* is called the geometric multiplicity μ_i of the eigenvalue *r_i*

$$\mu_i = \dim (E_{r_i}) = \text{Nullity} (\mathbf{A} - r_i \mathbf{I})$$

Properties of Algebraic and Geometric Multiplicities

Suppose:

 r_1, \ldots, r_k are the eigenvalues of an $n \times n$ matrix **A** m_1, \ldots, m_k are the corresponding algebraic multiplicities (m_i = the number of factors of $(\lambda - r_i)$ in $p_{\mathbf{A}}(\lambda)$) μ_1, \ldots, μ_k are the corresponding geometric multiplities ($\mu_i = \dim (E_{r_i})$) Then

.

$$\sum_{i=1}^k m_i = n$$

 $\mu_i \leq m_i$ for all i

Let's now find the eigenvectors of the matrix

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

This the same matrix as before and so we already know that its eigenvalues are $\lambda = 1$ and $\lambda = 2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

E_1 ; the 1-eigenspace of **A** We have

$$E_{1} = NullSp(\mathbf{A} - (1)\mathbf{I}) = NullSp\begin{pmatrix} 1 - (1) & 1 & 0\\ 0 & 2 - (1) & 1\\ 0 & 0 & 1 - (1) \end{pmatrix}$$
$$= NullSp\begin{pmatrix} 0 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{pmatrix}$$
$$= NullSp\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}$$

The last matrix is the R.R.E.F. of $(\mathbf{A} - (1)\mathbf{I})$. Thus, if $(\mathbf{A} - (1)\mathbf{I})\mathbf{x} = \mathbf{0}$, we must have

$$\begin{array}{c} x_2 = 0 \\ x_3 = 0 \\ 0 = 0 \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

and x_1 is a free variable in the solution.

E_1 ; the 1-eigenspace of **A**, Cont'd

Thus, a solution vector must have the form

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ 0 \\ 0 \end{array} \right] = x_1 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$$

The eigenvector corresponding to the eigenvalue 1 is thus

$$\mathbf{v}_1 = \left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight]$$

Since we have only one basis vector for the 1-eigenspace, E_1 , the geometric multiplicity of the eigenvalue 1 is 1.

E_2 ; the 2-eigenspace of **A**

We need to determine

$$NullSp(\mathbf{A} - (2)\mathbf{I}) = NullSp\begin{pmatrix} 1-(2) & 1 & 0\\ 0 & 2-(2) & 1\\ 0 & 0 & 1-(2) \end{pmatrix}$$
$$= NullSp\begin{pmatrix} -1 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & -1 \end{pmatrix}$$
$$= NullSp\begin{pmatrix} 1 & -1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}$$

and so we need

$$\begin{array}{c} x_1 - x_2 = 0 \\ x_3 = 0 \\ 0 = 0 \end{array} \right\} \quad \Rightarrow \quad \mathbf{x} = \begin{bmatrix} x_2 \\ x_2 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

E_2 ; the 2-eigenspace of **A**, Cont'd

Hence, a basis vector for E_2 will be

$$\mathbf{v}_2 = \left[egin{array}{c} 1 \\ 1 \\ 0 \end{array}
ight]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and the geometric multiplicity of the eigenvalue $\lambda = 2$ is 1.

Example 1: Summary

The matrix

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

has

$$p_{\mathbf{A}}(\lambda) = \det (\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)^2 (2 - \lambda)$$

as its characteristic polynomial and we have the following table

eigenvalue	eigenvectors	alg. mult.	geo. mult
1	$\left\{ \left[\begin{array}{c} 1\\ 0\\ 0 \end{array} \right] \right\}$	2	1
2	$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$	1	1

Example 2

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} -4 & 0 & 0 \\ -7 & 2 & -1 \\ 7 & 0 & 2 \end{bmatrix}$$

and then determine the algebraic and geometric multiplicities of each eigenvalue.

$$p_{\mathbf{A}}(\lambda) = \det \begin{pmatrix} -4 - \lambda & 0 & 0 \\ -7 & 2 - \lambda & -1 \\ 7 & 0 & 2 - \lambda \end{pmatrix} = (-4 - \lambda) (2 - \lambda)^2$$

We thus have 2 eigenvalues $\lambda = -4, 2$. The eigenvalue $\lambda = -4$ has algebraic multiplicity 1 (since there is 1 factor of $(-4 - \lambda)$ in $p_{\mathbf{A}}(\lambda)$), while the eigenvalue $\lambda = 2$ has algebraic multiplicity 2 (since there are 2 factors of $(2 - \lambda)$ in $p_{\mathbf{A}}(\lambda)$).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example 2: -4-eigenspace

$$NullSp(\mathbf{A} - (-4)\mathbf{I}) = NullSp\begin{pmatrix} 0 & 0 & 0\\ -7 & 6 & -1\\ 7 & 0 & 6 \end{pmatrix} = NullSp\begin{pmatrix} 1 & 0 & \frac{6}{7}\\ 0 & 1 & \frac{5}{7}\\ 0 & 0 & 0 \end{pmatrix}$$

The vector $\mathbf{v}_{\lambda=-4} = \begin{bmatrix} -\frac{6}{7} \\ -\frac{5}{7} \\ 1 \end{bmatrix}$ thus provides a basis for the $\lambda = -4$ eigenspace. Since the (-4)-eigenspace is 1-dimensional, the geometric multiplicity of the eigenvalue -4 is 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example 2: 2-eigenspace

$$NullSp(\mathbf{A} - (2)\mathbf{I}) = NullSp\begin{pmatrix} -6 & 0 & 0 \\ -7 & 0 & -1 \\ 7 & 0 & 0 \end{pmatrix}$$
$$= NullSp\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$= span\begin{pmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

The vector $\mathbf{v}_{\lambda=2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ thus provides a basis for the $\lambda = 2$ eigenspace. Since the eigenspace is 1-dimensional, the geometric multiplicity of the eigenvalue 2 is 1.

Example 2: Summary

The matrix

$$\mathbf{A} = \begin{bmatrix} -4 & 0 & 0 \\ -7 & 2 & -1 \\ 7 & 0 & 2 \end{bmatrix}$$

has

$$p_{\mathbf{A}}\left(\lambda
ight) = \det\left(\mathbf{A} - \lambda\mathbf{I}
ight) = \left(-4 - \lambda
ight)\left(2 - \lambda
ight)^2$$

as its characteristic polynomial and we have the following table of multiplicities

eigenvalue	eigenvectors	alg. mult.	geo. mult
-4	$\left\{ \left[\begin{array}{c} -\frac{6}{7} \\ -\frac{5}{7} \\ 1 \end{array} \right] \right\}$	1	1
2	$\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$	2	1