Lecture 31: Diagonalization of Square Matrices

Math 3013 Oklahoma State University

April 15, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Agenda

- 1. Diagonal Matrices
- 2. Diagonalizability
- 3. Some Matrix Multiplication Identities
- 4. Connection with Eigenvalue Multiplicities
- 5. Other Special Cases for Diagonalizability

Diagonal Matrices

Definition

An $n \times n$ matrix is **diagonal** if its only non-zero entries occur along its main diagonal; i.e.

$$(\mathbf{A})_{ij} = 0$$
 if $i \neq j$

In other words, a diagonal matrix is a matrix of the form

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two Special Properties of Diagonal Matrices

Let $\boldsymbol{D},\,\boldsymbol{D}'$ be a diagonal matrices : Say

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} \quad , \quad \mathbf{D}' = \begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mu_n \end{bmatrix}$$

Then

$$\mathbf{DD}' = \begin{bmatrix} \lambda_{1}\mu_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2}\mu_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_{n}\mu_{n} \end{bmatrix}$$
(1)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Two Special Properties of Diagonal Matrices, Cont'd

Suppose $\mathbf{e}_i \in \mathbb{R}^n$ is the i^{th} standard basis vector. Then

$$\mathbf{D}\mathbf{e}_i = \lambda_i \mathbf{e}_i \tag{(*)}$$

i.e., \mathbf{e}_i is an eigenvector of **D** with eigenvalue λ_i .

N.B. Property (*) makes it easy to compute the action of diagonal matrices on more general vectors. If $\mathbf{v} = [v_1, v_2, \dots, v_n] \in \mathbb{R}^n$

$$\mathbf{Dv} = \mathbf{D} (v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n)$$

= $v_1 (\mathbf{De}_1) + v_2 (\mathbf{De}_2) + \dots + v_n (\mathbf{De}_n)$
= $(v_1 \lambda_1) \mathbf{e}_1 + (v_2 \lambda_2) \mathbf{e}_2 + \dots + (v_n \lambda_n) \mathbf{e}_n$

Thus, even if \mathbf{v} is not an eigenvector of \mathbf{D} , the action of \mathbf{D} on \mathbf{v} is relatively simple to compute (and understand).

Moral: Dealing with a matrix **A** is much easier when the matrix is diagonal

Diagonalizability

Definition

An $n \times n$ matrix **A** is said to be **diagonalizable** if there is an **invertible** $n \times n$ matrix **C** and a diagonal matrix **D** such that

 $\mathbf{C}^{-1}\mathbf{A}\mathbf{C} = \mathbf{D}$

Today, I'll explain how to find the matrix **C** that will convert an $n \times n$ matrix **A** into a diagonal matrix **A**. In particular, I show how the "diagonalizing matrix" **C** can be constructed from the eigenvectors of **A** and how the corresponding diagonal matrix **D** is constructed from the eigenvalues of **A**. Digression: Some Matrix Multiplication Identities

Lemma

Let **A** and **C** are $n \times n$ matrices, and suppose c_1, \ldots, c_n are column vectors of **C**. then

$$\mathbf{AC} = \begin{bmatrix} \uparrow & & \uparrow \\ (\mathbf{Ac}_1) & \cdots & (\mathbf{Ac}_n) \\ \downarrow & & \downarrow \end{bmatrix}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Example

$$\mathbf{AC} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\ a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \end{bmatrix}$$

Meanwhile

$$\mathbf{Ac}_{1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c_{11} \\ c_{21} \end{bmatrix} = \begin{bmatrix} a_{11}c_{11} + a_{12}c_{21} \\ a_{21}c_{11} + a_{22}c_{21} \end{bmatrix} \\ \mathbf{Ac}_{2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c_{12} \\ c_{22} \end{bmatrix} = \begin{bmatrix} a_{11}c_{12} + a_{12}c_{22} \\ a_{21}c_{12} + a_{22}c_{22} \end{bmatrix}$$

Digression: Some Matrix Multiplication Identities, Cont'd

Lemma

Suppose **C** is an $n \times n$ matrix with columns c_1, \ldots, c_n and **D** is a diagonal $n \times n$ matrix

$$\mathbf{C} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ \downarrow & & \downarrow \end{bmatrix} \quad , \quad \mathbf{D} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

Then

$$\mathbf{CD} = \begin{bmatrix} \uparrow & \cdots & \uparrow \\ (\lambda_1 \mathbf{c}_1) & \cdots & (\lambda_n \mathbf{c}_n) \\ \downarrow & \cdots & \downarrow \end{bmatrix}$$

・ロト・西ト・山田・山田・山口・

Proof of Lemma

Write

$$(D)_{ij} = \lambda_i \delta_{ij}$$
, where $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

Then

$$(\mathbf{CD})_{ij} = \sum_{k=1}^{n} c_{ik} d_{kj}$$
$$= \sum_{k=1}^{n} (\mathbf{c}_k)_i (\lambda_k \delta_{jk})$$
$$= (\mathbf{c}_j)_i \lambda_j$$

So the j^{th} column of **CD** is

$$Col_{j}\left(\mathsf{CD}
ight) = \left[egin{array}{c} \uparrow \\ \lambda_{j}\mathbf{c}_{j} \\ \downarrow \end{array}
ight]$$

(ロ)、(型)、(E)、(E)、 E) の(()

A Necessary Condition for Diagonalizability

Theorem

Suppose **A** is a diagonalizable $n \times n$ matrix; so there is an $n \times n$ matrix **C** and a $n \times n$ diagonal matrix **D** such that $C^{-1}AC = D$. Write

$$\mathbf{C} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ \downarrow & & \downarrow \end{bmatrix} \quad , \quad \mathbf{D} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

Then for each i = 1, ..., n, the i^{th} column, c_i , of C must be an eigenvector of A with eigenvalue $\lambda_i = i^{th}$ diagonal entry of D.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Proof of Theorem

Multiplying both sides of the equation $\mathbf{C}^{-1}\mathbf{A}\mathbf{C}=\mathbf{D}$ from the left by \mathbf{C} we get

$$AC = CD$$

Let $\mathbf{c}_1, \ldots, \mathbf{c}_n$ be the columns of \mathbf{C} . From our matrix multiplication identities

$$\mathbf{AC} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{Ac}_1 & \cdots & \mathbf{Ac}_n \\ \downarrow & & \downarrow \end{bmatrix} \quad , \quad \mathbf{CD} = \begin{bmatrix} \uparrow & & \uparrow \\ \lambda_1 \mathbf{c}_1 & \cdots & \lambda_n \mathbf{c}_n \\ \downarrow & & \downarrow \end{bmatrix}$$

and the Theorem follows by comparing $\mbox{\bf AC}$ and $\mbox{\bf CD}$ column by column.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Diagonalization Algorithm

The theorem suggests how we might find a matrix ${\bf C}$ that diagonalizes ${\bf A}$:

- (i) Find *n* eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of **A** and use them as the columns of a matrix **C** (in the same order)
- (ii) Use the eigenvalue of \mathbf{v}_i as the i^{th} entry of a diagonal matrix \mathbf{D}

We then have

$$\mathbf{C} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \downarrow & & \downarrow \end{bmatrix} \quad , \quad \mathbf{D} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

and so, by the theorem,

AC = CD

If C is invertible, we can then multiply both sides of this last equation by \mathbf{C}^{-1} to get

$$C^{-1}AC = D$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

thus diagonalizing \mathbf{A} .

Example

Find a matrix **C** that diagonalizes
$$\mathbf{A} = \left[egin{array}{cc} 2 & 6 \ 0 & -1 \end{array}
ight]$$

Step 1: We first need to find the eigenvalues of A.

$$0 = p_{\mathbf{A}}(\lambda) = \det \begin{pmatrix} 2-\lambda & 6\\ 0 & -1-\lambda \end{pmatrix} = (2-\lambda)(-1-\lambda)$$

$$\Rightarrow \quad \lambda = 2, -1$$

E_2 : 2-eigenspace

Step 2: Find the eigenvectors of A

$$E_{2} = NullSp\left(\left[\begin{array}{cc} 2-2 & 6\\ 0 & -1-2 \end{array}\right]\right)$$
$$= NullSp\left(\left[\begin{array}{cc} 0 & 0\\ 0 & 1 \end{array}\right]\right)$$
$$\Rightarrow \quad x_{2} = 0 , x_{1} \text{ is free}$$
$$\Rightarrow \quad \mathbf{x} = \left[\begin{array}{c} x_{1}\\ 0 \end{array}\right] = x_{1} \left[\begin{array}{c} 1\\ 0 \end{array}\right]$$
$$\Rightarrow \quad \mathbf{v}_{\lambda=2} = \left[\begin{array}{c} 1\\ 0 \end{array}\right]$$

 $E_2 = span\left(\left[\begin{array}{c} 1\\ 0 \end{array} \right] \right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

So

E_{-1} : (-1)-eigenspace

$$E_{-1} = NullSp\left(\left[\begin{array}{ccc} 2-(-1) & 6\\ 0 & -1-(-1) \end{array}\right]\right)$$
$$= NullSp\left(\left[\begin{array}{ccc} 1 & 2\\ 0 & 0 \end{array}\right]\right)$$
$$\Rightarrow \quad x_1 = -2x_2 \quad , \quad x_2 \text{ is free}$$
$$\Rightarrow \quad \mathbf{x} = \left[\begin{array}{ccc} -2x_2\\ x_2 \end{array}\right] = x_2 \left[\begin{array}{ccc} -2\\ 1 \end{array}\right]$$
$$\mathbf{v}_{\lambda=-1} = \left[\begin{array}{ccc} -2\\ 1 \end{array}\right]$$

シック 単 (中本) (中本) (日)

Example, Cont'd

We thus have two linearly independent eigenvectors and so we can form an invertible matrix **C** using $\mathbf{v}_{\lambda=2}$ and $\mathbf{v}_{\lambda=-1}$ as columns

$$\mathbf{C} = \left[egin{array}{cc} 1 & -2 \ 0 & 1 \end{array}
ight]$$

Using the cofactor formula

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]^{-1}=\frac{1}{ad-bc}\left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]$$

we find

$$\mathbf{C}^{-1} = \frac{1}{1} \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right]$$

Example, Cont'd

And so

$$\mathbf{C}^{-1}\mathbf{A}\mathbf{C} = \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6\\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2\\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 4\\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2\\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0\\ 0 & -1 \end{bmatrix}$$

Note that the diagonal entries of the diagonal matrix are just the eigenvalues of **A** (the first eigenvalue 2 corresponding to the first eigenvector $\mathbf{v}_{\lambda=2}$ and the second eigenvalue -1 corresponding to the second eigenvector $\mathbf{v}_{\lambda=-1}$).

How to ensure that **C** is invertible

We have just seen that we can diagonalize **A** if we can form an **invertible** matrix **C** using the eigenvectors of **A** as columns. Recall an $n \times n$ matrix **C** is invertible if and only if each of the following statements are true

(i) **C** is row reducible to the identity matrix

(ii)
$$\mathbf{C}\mathbf{x} = \mathbf{b}$$
 has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$

(iii) The only solution of
$$Cx = 0$$
 is $x = 0$

(iv)
$$rank(\mathbf{C}) = n$$

(v) det (\mathbf{C}) $\neq 0$

Since $rank(\mathbf{C}) = \dim(ColSp(\mathbf{C}))$, (iv) in turn requires that the columns of \mathbf{C} are linearly independent.

Thus,

Corollary

An $n \times n$ matrix **A** is diagonalizable **if and only if** it has n linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. In this situation, if we set

$$\mathbf{C} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \downarrow & & \downarrow \end{bmatrix} \quad , \quad \mathbf{D} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

with

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

Then **C** is invertible and

$$AC = CD \implies C^{-1}AC = D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

Suppose \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of a matrix \mathbf{A} with different eigenvalues:

$$\mathbf{A}\mathbf{v}_1 = \lambda_1\mathbf{v}_1$$
$$\mathbf{A}\mathbf{v}_2 = \lambda_2\mathbf{v}_2$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

with $\lambda_1 \neq \lambda_2$. Then $\{\mathbf{v}_1, \mathbf{v}_2\}$ are linearly independent.

Proof

Suppose $\{\mathbf{v}_1, \mathbf{v}_2\}$ are not linearly independent. Then there are non-zero numbers x_1 and x_2 such that

 λ_1

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{0} \quad \Rightarrow \quad \mathbf{v}_1 = -\frac{x_2}{x_1}\mathbf{v}_2$$

But then

$$\mathbf{v}_{1} = \mathbf{A}\mathbf{v}_{1}$$

$$= \mathbf{A}\left(-\frac{x_{2}}{x_{1}}\mathbf{v}_{2}\right)$$

$$= \left(-\frac{x_{2}}{x_{1}}\right)\mathbf{A}\mathbf{v}_{2}$$

$$= \left(-\frac{x_{2}}{x_{1}}\right)(\lambda_{2}\mathbf{v}_{2})$$

$$= \lambda_{2}\left(-\frac{x_{2}}{x_{1}}\mathbf{v}_{2}\right)$$

$$= \lambda_{2}\mathbf{v}_{1}$$

More generally

which implies

$$(\lambda_1 - \lambda_2) \mathbf{v}_2 = \mathbf{0}$$

which can't happen since $\lambda_1 \neq \lambda_2$ and \mathbf{v}_2 is a non-zero vector.

Theorem

If $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are eigenvectors of a matrix \mathbf{A} with different eigenvalues, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ are linearly independent.

So if an $n \times n$ matrix **A** has *n* distinct eigenvalues, it will be diagonalizable.

Diagonalizability and Multiplicities of Eigenvalues

We have seen that an $n \times n$ matrix is diagonalizable if and only if it has *n* linearly independent eigenvectors.

I'll now show you another criterion for diagonalizability based on the notions of algebraic and geometric multiplicities.

Recall that the **algebraic multiplicity** of an eigenvalue r of an $n \times n$ matrix **A** is the number of factors of $(\lambda - r)$ that occur in the characteristic polynomial $p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$ of **A**. If

$$p_{\mathbf{A}}(\lambda) = a(\lambda - r_1)^{m_1} \cdots (\lambda - r_k)^{m_k}$$

then

$$Mult_{alg}\left(r_{i}
ight)=m_{i}$$

Note that since deg $(p_{\mathbf{A}}(\lambda)) = n$, we always have

$$n=m_1+m_2+\cdots+m_k$$

Diagonalizability and Multiplicities of Eigenvalues, Cont'd

The **geometric multiplicity** μ of an eigenvalue r of **A** is the dimension of the r-eigenspace of **A** :

$$\mu = Mult_{geom}(r) = \dim(NullSp(\mathbf{A} - r\mathbf{I}))$$

The geometric multiplicities effectively counts the number of linearly independent eigenvectors in each eigenspace. If we sum over the geometric multiplicities μ_i of each eigenvalue r_i , we get the total number of linearly independent eigenvectors. Thus,

linearly independent eigenvectors $= \mu_1 + \mu_2 + \cdots + \mu_k$

Thus,

Theorem

An $n \times n$ matrix is diagonalizable if and only if the geometric multiplicities of its eigenvalues sum to n.

$$n = \mu_1 + \cdots + \mu_k \quad \iff \quad \mathbf{A} \text{ is diagonalizable}$$

Numerics for Algebraic and Geometric Multiplicities

Theorem

Let r_1, \ldots, r_k be the eigenvalues of an $n \times n$ matrix **A**, let m_1, \ldots, m_k be the corresponding algebraic multiplicities, and let μ_1, \ldots, μ_k be the corresponding geometric multiplicities. Then

$$1 \leq \mu_i \leq m_i$$
 for $i = 1, \ldots, k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

Let r_1, \ldots, r_k be the eigenvalues of an $n \times n$ matrix **A**. Then

A is diagonalizable \iff $Mult_{geom}(r_i) = Mult_{alg}(r_i)$ for all i

Put another way, **A** is **not diagonalizable** if there is an eigenvalue r_i such that

$$Mult_{geom}(r_i) < Mult_{alg}(r_i)$$

For if $m_i = Mult_{alg}(r_i)$ and $\mu_i = Mult_{geom}(r_i)$, then

lin. indep. eigenvectors $= \begin{array}{c} \mu_1 + \cdots + \mu_k \\ < \end{array} \\ m_1 + \cdots + m_k = n \end{array}$

Example

Determine if the matrix
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 is diagonalizable.

We have

$$0 = p_{f A}\left(\lambda
ight) = \det \left(egin{array}{cc} 1-\lambda & 1 \ 0 & 1-\lambda \end{array}
ight) = (1-\lambda)^2$$

and so we have one eigenvalue $\lambda = 1$ with algebraic multiplicity 2.

$$E_{1} = NullSp \left(\begin{array}{cc} 1-1 & 1 \\ 0 & 1-1 \end{array} \right) = NullSp \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) = span \left(\left[\begin{array}{cc} 1 \\ 0 \end{array} \right] \right)$$

Since E_1 is 1-dimensional, the geometric multiplicity of $\lambda = 1$ is 1. Since

1 = Geo. Mult.
$$(\lambda = 1) < Alg.$$
 Mult. $(\lambda = 1) = 2$

The matrix **A** is **not diagonalizable**.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Other Criteria for Diagonalizability

Theorem

Let **A** be an $n \times n$ matrix.

(i) **A** has n distinct eigenvalues, then **A** is diagonalizable.

(ii) If $\mu_i = m_i$ for each eigenvalue r_i , **A** is diagonalizable.

(iii) If **A** has an eigenvalue r_i for which the corresponding geometric multiplicity μ_i is strictly less than the corresponding algebraic multiplicity m_i , then **A** is not diagonalizable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Other Tests for Diagonalizability, Cont'd

Lastly, we have the following theorem which is frequently applicable in physical problems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

If **A** is a symmetric matrix (i.e., $\mathbf{A}^t = \mathbf{A}$), then

(i) All the eigenvalues of **A** are real numbers.

(ii) **A** is diagonalizable.