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Diagonal Matrices

Definition
An n× n matrix is diagonal if its only non-zero entries occur along
its main diagonal; i.e.

(A)ij = 0 if i 6= j

In other words, a diagonal matrix is a matrix of the form

D =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn





Two Special Properties of Diagonal Matrices

Let D, D′ be a diagonal matrices :
Say

D =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

 , D′ =


µ1 0 · · · 0

0 µ2
. . .

...
...

. . .
. . . 0

0 · · · 0 µn


Then

DD′ =


λ1µ1 0 · · · 0

0 λ2µ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λnµn

 (1)



Two Special Properties of Diagonal Matrices, Cont’d

Suppose ei ∈ Rn is the i th standard basis vector. Then

Dei = λiei (*)

i.e., ei is an eigenvector of D with eigenvalue λi .

N.B. Property (*) makes it easy to compute the action of diagonal
matrices on more general vectors. If v = [v1, v2, . . . , vn] ∈ Rn

Dv = D (v1e1 + v2e2 + · · ·+ vnen)

= v1 (De1) + v2 (De2) + · · ·+ vn (Den)

= (v1λ1) e1 + (v2λ2) e2 + · · ·+ (vnλn) en

Thus, even if v is not an eigenvector of D, the action of D on v is
relatively simple to compute (and understand).

Moral: Dealing with a matrix A is much easier when the matrix is
diagonal



Diagonalizability

Definition
An n × n matrix A is said to be diagonalizable if there is an
invertible n × n matrix C and a diagonal matrix D such that

C−1AC = D

Today, I’ll explain how to find the matrix C that will convert an
n × n matrix A into a diagonal matrix A.
In particular, I show how the “diagonalizing matrix” C can be
constructed from the eigenvectors of A and how the corresponding
diagonal matrix D is constructed from the eigenvalues of A.



Digression: Some Matrix Multiplication Identities

Lemma
Let A and C are n × n matrices, and suppose c1, . . . , cn are
column vectors of C. then

AC =

 ↑ ↑
(Ac1) · · · (Acn)
↓ ↓





Example

AC =

[
a11 a12
a21 a22

] [
c11 c12
c21 c22

]
=

[
a11c11 + a12c21 a11c12 + a12c22
a21c11 + a22c21 a21c12 + a22c22

]
Meanwhile

Ac1 =

[
a11 a12
a21 a22

] [
c11
c21

]
=

[
a11c11 + a12c21
a21c11 + a22c21

]
Ac2 =

[
a11 a12
a21 a22

] [
c12
c22

]
=

[
a11c12 + a12c22
a21c12 + a22c22

]



Digression: Some Matrix Multiplication Identities, Cont’d

Lemma
Suppose C is an n × n matrix with columns c1, . . . , cn and D is a
diagonal n × n matrix

C =

 ↑ ↑
c1 · · · cn
↓ ↓

 , D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


Then

CD =

 ↑ · · · ↑
(λ1c1) · · · (λncn)
↓ · · · ↓





Proof of Lemma
Write

(D)ij = λiδij , where δij =

{
1 if i = j
0 if i 6= j

Then

(CD)ij =
n∑

k=1

cikdkj

=
n∑

k=1

(ck)i (λkδjk)

= (cj)i λj

So the j th column of CD is

Colj (CD) =

 ↑
λjcj
↓





A Necessary Condition for Diagonalizability

Theorem
Suppose A is a diagonalizable n × n matrix; so there is an n × n
matrix C and a n × n diagonal matrix D such that C−1AC = D.
Write

C =

 ↑ ↑
c1 · · · cn
↓ ↓

 , D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


Then for each i = 1, . . . , n, the i th column, ci , of C must be an
eigenvector of A with eigenvalue λi = i th diagonal entry of D.



Proof of Theorem

Multiplying both sides of the equation C−1AC = D from the left
by C we get

AC = CD

Let c1, . . . , cn be the columns of C. From our matrix
multiplication identities

AC =

 ↑ ↑
Ac1 · · · Acn
↓ ↓

 , CD =

 ↑ ↑
λ1c1 · · · λncn
↓ ↓


and the Theorem follows by comparing AC and CD column by
column.



The Diagonalization Algorithm
The theorem suggests how we might find a matrix C that
diagonalizes A:

(i) Find n eigenvectors v1, . . . , vn of A and use them as the
columns of a matrix C (in the same order)

(ii) Use the eigenvalue of vi as the i th entry of a diagonal matrix
D

We then have

C =

 ↑ ↑
v1 · · · vn
↓ ↓

 , D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


and so, by the theorem,

AC = CD

If C is invertible, we can then multiply both sides of this last
equation by C−1 to get

C−1AC = D

thus diagonalizing A.



Example

Find a matrix C that diagonalizes A =

[
2 6
0 −1

]
Step 1: We first need to find the eigenvalues of A.

0 = pA (λ) = det

(
2− λ 6

0 −1− λ

)
= (2− λ) (−1− λ)

⇒ λ = 2,−1



E2 : 2-eigenspace

Step 2: Find the eigenvectors of A

E2 = NullSp

([
2− 2 6

0 −1− 2

])
= NullSp

([
0 0
0 1

])
⇒ x2 = 0 , x1 is free

⇒ x =

[
x1
0

]
= x1

[
1
0

]
⇒ vλ=2 =

[
1
0

]
So

E2 = span

([
1
0

])



E−1 : (−1)-eigenspace

E−1 = NullSp

([
2− (−1) 6

0 −1− (−1)

])
= NullSp

([
1 2
0 0

])
⇒ x1 = −2x2 , x2 is free

⇒ x =

[
−2x2
x2

]
= x2

[
−2
1

]
vλ=−1 =

[
−2
1

]



Example, Cont’d

We thus have two linearly independent eigenvectors and so we can
form an invertible matrix C using vλ=2 and vλ=−1 as columns

C =

[
1 −2
0 1

]
Using the cofactor formula[

a b
c d

]−1
=

1

ad − bc

[
d −b
−c a

]
we find

C−1 =
1

1

[
1 2
0 1

]
=

[
1 2
0 1

]



Example, Cont’d

And so

C−1AC =

[
1 2
0 1

] [
2 6
0 −1

] [
1 −2
0 1

]
=

[
2 4
0 −1

] [
1 −2
0 1

]
=

[
2 0
0 −1

]
Note that the diagonal entries of the diagonal matrix are just the
eigenvalues of A (the first eigenvalue 2 corresponding to the first
eigenvector vλ=2 and the second eigenvalue −1 corresponding to
the second eigenvector vλ=−1).



How to ensure that C is invertible

We have just seen that we can diagonalize A if we can form an
invertible matrix C using the eigenvectors of A as columns.
Recall an n × n matrix C is invertible if and only if each of the
following statements are true

(i) C is row reducible to the identity matrix

(ii) Cx = b has a unique solution for every b ∈ Rn

(iii) The only solution of Cx = 0 is x = 0

(iv) rank (C) = n

(v) det (C) 6= 0

Since rank (C) = dim (ColSp (C)), (iv) in turn requires that the
columns of C are linearly independent.



Thus,

Corollary

An n× n matrix A is diagonalizable if and only if it has n linearly
independent eigenvectors v1, . . . , vn. In this situation, if we set

C =

 ↑ ↑
v1 · · · vn
↓ ↓

 , D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


with

Avi = λivi

Then C is invertible and

AC = CD =⇒ C−1AC = D



Lemma
Suppose v1 and v2 are eigenvectors of a matrix A with different
eigenvalues:

Av1 = λ1v1

Av2 = λ2v2

with λ1 6= λ2. Then {v1, v2} are linearly independent.



Proof
Suppose {v1, v2} are not linearly independent. Then there are
non-zero numbers x1 and x2 such that

x1v1 + x2v2 = 0 ⇒ v1 = −x2
x1

v2

But then

λ1v1 = Av1

= A

(
−x2
x1

v2

)
=

(
−x2
x1

)
Av2

=

(
−x2
x1

)
(λ2v2)

= λ2

(
−x2
x1

v2

)
= λ2v1



More generally

which implies
(λ1 − λ2) v2 = 0

which can’t happen since λ1 6= λ2 and v2 is a non-zero vector.

Theorem
If v1, . . . , vk are eigenvectors of a matrix A with different
eigenvalues, then {v1, . . . , vk} are linearly independent.

So if an n × n matrix A has n distinct eigenvalues, it will be
diagonalizable.



Diagonalizability and Multiplicities of Eigenvalues

We have seen that an n × n matrix is diagonalizable if and only if
it has n linearly independent eigenvectors.
I’ll now show you another criterion for diagonalizability based on
the notions of algebraic and geometric multiplicities.
Recall that the algebraic multiplicity of an eigenvalue r of an
n × n matrix A is the number of factors of (λ− r) that occur in
the characteristic polynomial pA (λ) = det (A− λI) of A. If

pA (λ) = a (λ− r1)m1 · · · (λ− rk)mk

then
Multalg (ri ) = mi

Note that since deg (pA (λ)) = n, we always have

n = m1 + m2 + · · ·+ mk



Diagonalizability and Multiplicities of Eigenvalues, Cont’d
The geometric multiplicity µ of an eigenvalue r of A is the
dimension of the r -eigenspace of A :

µ = Multgeom (r) = dim (NullSp (A− r I))

The geometric multiplicities effectively counts the number of
linearly independent eigenvectors in each eigenspace. If we sum
over the geometric multiplicities µi of each eigenvalue ri , we get
the total number of linearly independent eigenvectors. Thus,

# linearly independent eigenvectors = µ1 + µ2 + · · ·+ µk

Thus,

Theorem
An n × n matrix is diagonalizable if and only if the geometric
multiplicities of its eigenvalues sum to n.

n = µ1 + · · ·+ µk ⇐⇒ A is diagonalizable



Numerics for Algebraic and Geometric Multiplicities

Theorem
Let r1, . . . , rk be the eigenvalues of an n × n matrix A, let
m1, . . . ,mk be the corresponding algebraic multiplicities, and let
µ1, . . . , µk be the corresponding geometric multiplicities. Then

1 ≤ µi ≤ mi for i = 1, . . . , k



Corollary

Let r1, . . . , rk be the eigenvalues of an n × n matrix A. Then

A is diagonalizable ⇐⇒ Multgeom (ri ) = Multalg (ri ) for all i

Put another way, A is not diagonalizable if there is an eigenvalue
ri such that

Multgeom (ri ) < Multalg (ri )

For if mi = Multalg (ri ) and µi = Multgeom (ri ), then

# lin. indep. eigenvectors = µ1 + · · ·+ µk

< m1 + · · ·+ mk = n



Example

Determine if the matrix A =

[
1 1
0 1

]
is diagonalizable.

We have

0 = pA (λ) = det

(
1− λ 1

0 1− λ

)
= (1− λ)2

and so we have one eigenvalue λ = 1 with algebraic multiplicity 2.

E1 = NullSp

(
1− 1 1

0 1− 1

)
= NullSp

(
0 1
0 0

)
= span

([
1
0

])
Since E1 is 1-dimensional, the geometric multiplicity of λ = 1 is 1.
Since

1 = Geo. Mult. (λ = 1) < Alg. Mult. (λ = 1) = 2

The matrix A is not diagonalizable.



Other Criteria for Diagonalizability

Theorem
Let A be an n × n matrix.

(i) A has n distinct eigenvalues, then A is diagonalizable.

(ii) If µi = mi for each eigenvalue ri , A is diagonalizable.

(iii) If A has an eigenvalue ri for which the corresponding
geometric multiplicity µi is strictly less than the corresponding
algebraic multiplicity mi , then A is not diagonalizable.



Other Tests for Diagonalizability, Cont’d

Lastly, we have the following theorem which is frequently
applicable in physical problems.

Theorem
If A is a symmetric matrix (i.e., At = A), then

(i) All the eigenvalues of A are real numbers.

(ii) A is diagonalizable.


