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Diagonalizability

Definition
An n × n matrix A is said to be diagonalizable if there is an
invertible n × n matrix C and a diagonal matrix D such that

C−1AC = D

Theorem
An n × n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors.



Constructing the matrices C and D

Theorem
Suppose an n× n matrix A has n linearly independent eigenvectors
v1, . . . , vn. Let λ1, . . . , λn be the corresponding set of eigenvalues,
so that

Avi = λivi , i = 1, . . . , n

From these eigenvector/eigenvalue pairs, construct two matrices

C ≡

 ↑ · · · ↑
v1 · · · vn
↓ · · · ↓

 , D =

 λ1 · · · 0
...

. . .
...

0 · · · λn

 .

Then
C−1AC = D

In other words, C diagonalizes A.





Situations A is automatically diagonalizable

Theorem
Suppose A is an n × n matrix, and let pA (λ) be its characteristic
polynomial

pA (λ) ≡ det (A− λI) = (λ− r1)
m1 · · · (λ− rk)

mk

and so its eigenvalues are r1, . . . , rk . Then

▶ If A has n distinct eigenvalues (all mi = 1), then A is
diagonalizable.

▶ If mi = µi ≡ dim (Eri ) for all i = 1, . . . k, then A is
diagonalizable.

▶ If A = At , then A is diagonalizable.



Example 1.

Determine if the matrix A =

[
5 −1
2 2

]
is diagonalizable; and, if

so, find a matrix C and a diagonal matrix D such that
C−1AC = D.

We have

pA (λ) = det (A− λI)

= (5− λ) (2− λ) + 2

= λ2 − 7λ+ 12

= (λ− 3) (λ− 4)

We thus have two distinct eigenvalues, λ = 3, 4. And so A is
diagonalizable.
We’ll next find the corresponding eigenvectors:



λ = 3 Eigenspace

Null (A− (3) I) = NullSp

(
2 −1
2 −1

)
= NullSp

(
2 −1
0 0

)
= span

([
1
2
1

])
= span

([
1
2

])

So, we can use v1 =

[
1
2

]
is an eigenvector of A with eigenvalue

λ1 = 3.



λ = 4 Eigenspace

NullSp (A− (4) I) = NullSp

(
1 −1
2 −2

)
= NullSp

(
1 −1
0 0

)
= span

([
1
1

])

and v2 =

[
1
1

]
is an eigenvector of A with eigenvalue λ2 = 4.



Having found two linearly independent eigenvectors v1 and

v1 =

[
1
2

]
, λ1 = 3

v2 =

[
1
1

]
, λ2 = 4

We can use v1 and v2 to form a diagonalizing matrix C:

C =

[
1 1
2 1

]
The corresponding diagonal matrix D is then formed by writing the
corresponding eigenvalues of these eigenvectors in the same order
along its main diagonal:

D =

[
3 0
0 4

]



Application: Diagonalization and Systems of ODEs

Consider the following 2× 2 system of first order ODEs:

dx1
dt

(t) = a11x1 (t) + a12x2 (t)

dx2
dt

(t) = a21x1 (t) + a22x2 (t)

Such systems occur in a number of disparate contexts

▶ Chemistry. The rate at which the concentration of a reactant
changes is proportional to its concentration and the
concentration of another reactant.

▶ Biology. The rate at which a predator and prey populations
changes is related to the populations of predators and prey.

▶ Physics. Coupled oscillators

▶ Electrical Engineering. Simple passive element (LRC) circuits



Matrix Formulation of a System of Linear ODEs

Set

x (t) =

[
x1 (t)
x2 (t)

]
, A =

[
a11 a12
a21 a22

]
so that we can write the system as matrix/differential equation.

d

dt
x (t) = Ax (t) (*)

We’ll regard (*) as the Linear Algebraic reformulation of the
original system.



Case 1: A is a Diagonal Matrix

Suppose

A =

(
λ1 0
0 λ2

)
In this case, we say that the system is decoupled; because the
differential equations for such a system are of the form

dx1
dt

= λ1x1 + 0

dx2
dt

= 0 + λ2x2

Such equations are easily solved, one-at-a-time,

x1 (t) = c1e
λ1t

x2 (t) = c2e
λ2t



Case 2: A is not Diagonal, but is Diagonalizable

This is the general case that we want to solve.

So suppose A is diagonalizable and that we have found the
eigenvalues λ1, λ2 and eigenvectors v1, v2 of the coefficient matrix
A, as well as the matrices C and D such that

C =

 ↑ ↑
v1 v2
↓ ↓

 , D =

(
λ1 0
0 λ2

)

with
D = C−1AC ⇐⇒ A = CDC−1



Diagonalizable Matrix A, Cont’d

Now consider the related system of ODEs corresponding to the
diagonal matrix D

d

dt
y (t) = Dy (t)

or [ dy1
dt
dy2
dt

]
=

(
λ1 0
0 λ2

)[
y1 (t)
y2 (t)

]
=

[
λ1y1
λ2y2

]
This is a decoupled system which will have

y (t) =

[
c1e

λ1t

c2e
λ2t

]
as its general solution



Diagonalizable Matrix A, Cont’d
Now consider

x (t) = Cy (t)

This vector function will satisfy

d

dt
x (t) =

d

dt
(Cy (t))

= C
d

dt
y (t) since C is a constant matrix

= C (Dy (t))

= CDC−1Cy (t)

=
(
CDC−1

)
(Cy (t))

= Ax (t)

That is to say,

x (t) = C

[
c1e

λ1t

c2e
λ2t

]
will satisy the original system of coupled ODEs (in fact, it will be
the general solution).



Summary: Solving Systems of Linear ODEs via
Diagonalization

One can solve a system of coupled ODEs

dx1
dt

= a11x1 (t) + · · ·+ a1nxn (t)

...
dxn
dt

= an1x1 (t) + · · ·+ annxn (t)

by carrying out the following sequence of steps:



Summary: Solving Systems of Linear ODEs via
Diagonalization, Cont’d

1. Form the coefficient matrix

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann


2. Find the eigenvalues λ1, . . . , λn and eigenvectors v1, . . . , vn of

A, and use them to form the diagonal matrix D and the
diagonalizing matrix C

D =

 λ1 0
. . .

0 λn

 , C =

 ↑ ↑
v1 · · · vn
↓ ↓





Summary: Solving Systems of Linear ODEs via
Diagonalization, Cont’d

3. Solve the decoupled system (easy)

dy

dt
= Dy (t) ⇒ y (t) =

 c1e
λ1t

...
cne

λnt


4. Transform the decoupled solutions back to solutions x (t) of

the original system
x (t) = Cy (t)


