Lecture 33: Diagonalization and Applications to Systems of ODEs

Math 3013 Oklahoma State University

April 20, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. Diagonalization of Square Matrices
- 2. Examples
- 3. Applications to Systems of ODEs

Diagonalizability

Definition

An $n \times n$ matrix **A** is said to be **diagonalizable** if there is an invertible $n \times n$ matrix **C** and a diagonal matrix **D** such that

 $\mathbf{C}^{-1}\mathbf{A}\mathbf{C} = \mathbf{D}$

Theorem

An $n \times n$ matrix **A** is diagonalizable if and only if **A** has n linearly independent eigenvectors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constructing the matrices **C** and **D**

Theorem

Suppose an $n \times n$ matrix **A** has n linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding set of eigenvalues, so that

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i \quad , \quad i = 1, \dots, n$$

From these eigenvector/eigenvalue pairs, construct two matrices

$$\mathbf{C} \equiv \begin{bmatrix} \uparrow & \cdots & \uparrow \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \downarrow & \cdots \downarrow \end{bmatrix} \quad , \quad \mathbf{D} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

Then

$$C^{-1}AC = D$$

In other words, C diagonalizes A.

ふして 山田 ふぼとえばやく日々

Situations **A** is automatically diagonalizable

Theorem

Suppose **A** is an $n \times n$ matrix, and let $p_{\mathbf{A}}(\lambda)$ be its characteristic polynomial

$$p_{\mathsf{A}}\left(\lambda
ight)\equiv \det\left(\mathsf{A}-\lambda\mathsf{I}
ight)=\left(\lambda-r_{1}
ight)^{m_{1}}\cdots\left(\lambda-r_{k}
ight)^{m_{k}}$$

and so its eigenvalues are r_1, \ldots, r_k . Then

- If A has n distinct eigenvalues (all m_i = 1), then A is diagonalizable.
- If $m_i = \mu_i \equiv \dim(E_{r_i})$ for all i = 1, ..., k, then **A** is diagonalizable.
- If $\mathbf{A} = \mathbf{A}^t$, then \mathbf{A} is diagonalizable.

Example 1.

Determine if the matrix $\mathbf{A} = \begin{bmatrix} 5 & -1 \\ 2 & 2 \end{bmatrix}$ is diagonalizable; and, if so, find a matrix \mathbf{C} and a diagonal matrix \mathbf{D} such that $\mathbf{C}^{-1}\mathbf{A}\mathbf{C} = \mathbf{D}$.

We have

$$p_{\mathbf{A}}(\lambda) = \det (\mathbf{A} - \lambda \mathbf{I})$$

= $(5 - \lambda) (2 - \lambda) + 2$
= $\lambda^2 - 7\lambda + 12$
= $(\lambda - 3) (\lambda - 4)$

We thus have two distinct eigenvalues, $\lambda = 3, 4$. And so **A** is diagonalizable.

We'll next find the corresponding eigenvectors:

$\lambda = 3$ Eigenspace

$$Null (\mathbf{A} - (3) \mathbf{I}) = NullSp \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}$$
$$= NullSp \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$
$$= span \left(\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} \right)$$
$$= span \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \right)$$

So, we can use $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_1 = 3$.

$\lambda = 4$ Eigenspace

$$NullSp(\mathbf{A} - (4)\mathbf{I}) = NullSp\begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$$
$$= NullSp\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$
$$= span\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)$$

and $\mathbf{v}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_2 = 4$.

◆□ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < </p>

Having found two linearly independent eigenvectors \mathbf{v}_1 and

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}$$
, $\lambda_1 = 3$
 $\mathbf{v}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$, $\lambda_2 = 4$

We can use \mathbf{v}_1 and \mathbf{v}_2 to form a diagonalizing matrix \mathbf{C} :

$$\mathbf{C} = \left[\begin{array}{rrr} 1 & 1 \\ 2 & 1 \end{array} \right]$$

The corresponding diagonal matrix \mathbf{D} is then formed by writing the corresponding eigenvalues of these eigenvectors in the same order along its main diagonal:

$$\mathbf{D} = \left[\begin{array}{cc} 3 & 0 \\ 0 & 4 \end{array} \right]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application: Diagonalization and Systems of ODEs

Consider the following 2×2 system of first order ODEs:

$$\frac{dx_1}{dt}(t) = a_{11}x_1(t) + a_{12}x_2(t)$$

$$\frac{dx_2}{dt}(t) = a_{21}x_1(t) + a_{22}x_2(t)$$

Such systems occur in a number of disparate contexts

- Chemistry. The rate at which the concentration of a reactant changes is proportional to its concentration and the concentration of another reactant.
- Biology. The rate at which a predator and prey populations changes is related to the populations of predators and prey.
- Physics. Coupled oscillators
- Electrical Engineering. Simple passive element (LRC) circuits

Matrix Formulation of a System of Linear ODEs

Set

$$\mathbf{x}(t) = \left[egin{array}{c} x_1(t) \ x_2(t) \end{array}
ight] \qquad,\qquad \mathbf{A} = \left[egin{array}{c} a_{11} & a_{12} \ a_{21} & a_{22} \end{array}
ight]$$

so that we can write the system as matrix/differential equation.

$$\frac{d}{dt}\mathbf{x}\left(t\right) = \mathbf{A}\mathbf{x}\left(t\right) \tag{*}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We'll regard (*) as the Linear Algebraic reformulation of the original system.

Case 1: A is a Diagonal Matrix

Suppose

$$\mathbf{A} = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right)$$

In this case, we say that the system is **decoupled**; because the differential equations for such a system are of the form

$$\frac{dx_1}{dt} = \lambda_1 x_1 + 0$$
$$\frac{dx_2}{dt} = 0 + \lambda_2 x_2$$

Such equations are easily solved, one-at-a-time,

$$\begin{array}{rcl} x_1\left(t\right) &=& c_1 e^{\lambda_1 t} \\ x_2\left(t\right) &=& c_2 e^{\lambda_2 t} \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Case 2: A is not Diagonal, but is Diagonalizable

This is the general case that we want to solve.

So suppose **A** is diagonalizable and that we have found the eigenvalues λ_1, λ_2 and eigenvectors $\mathbf{v}_1, \mathbf{v}_2$ of the coefficient matrix **A**, as well as the matrices **C** and **D** such that

$$\mathbf{C} = \begin{pmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{pmatrix} , \qquad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

with

$$\mathbf{D} = \mathbf{C}^{-1} \mathbf{A} \mathbf{C} \qquad \Longleftrightarrow \qquad \mathbf{A} = \mathbf{C} \mathbf{D} \mathbf{C}^{-1}$$

Diagonalizable Matrix A, Cont'd

Now consider the related system of ODEs corresponding to the diagonal matrix $\ensuremath{\textbf{D}}$

$$rac{d}{dt}\mathbf{y}\left(t
ight)=\mathbf{D}\mathbf{y}\left(t
ight)$$

or

$$\begin{bmatrix} \frac{dy_1}{dt} \\ \frac{dy_2}{dt} \end{bmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 y_1 \\ \lambda_2 y_2 \end{bmatrix}$$

This is a decoupled system which will have

$$\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ c_2 e^{\lambda_2 t} \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

as its general solution

Diagonalizable Matrix A, Cont'd

Now consider

$$\mathbf{x}(t) = \mathbf{C}\mathbf{y}(t)$$

This vector function will satisfy

$$\frac{d}{dt}\mathbf{x}(t) = \frac{d}{dt}(\mathbf{C}\mathbf{y}(t))$$

$$= \mathbf{C}\frac{d}{dt}\mathbf{y}(t) \text{ since } \mathbf{C} \text{ is a constant matrix}$$

$$= \mathbf{C}(\mathbf{D}\mathbf{y}(t))$$

$$= \mathbf{C}\mathbf{D}\mathbf{C}^{-1}\mathbf{C}\mathbf{y}(t)$$

$$= (\mathbf{C}\mathbf{D}\mathbf{C}^{-1})(\mathbf{C}\mathbf{y}(t))$$

$$= \mathbf{A}\mathbf{x}(t)$$

That is to say,

$$\mathbf{x}\left(t
ight)=\mathbf{C}\left[egin{array}{c} c_{1}e^{\lambda_{1}t}\ c_{2}e^{\lambda_{2}t}\end{array}
ight]$$

 Summary: Solving Systems of Linear ODEs via Diagonalization

One can solve a system of coupled ODEs

$$\frac{dx_1}{dt} = a_{11}x_1(t) + \dots + a_{1n}x_n(t)$$

$$\vdots$$

$$\frac{dx_n}{dt} = a_{n1}x_1(t) + \dots + a_{nn}x_n(t)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

by carrying out the following sequence of steps:

Summary: Solving Systems of Linear ODEs via Diagonalization, Cont'd

1. Form the coefficient matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Find the eigenvalues λ₁,..., λ_n and eigenvectors v₁,..., v_n of A, and use them to form the diagonal matrix D and the diagonalizing matrix C

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \quad , \quad \mathbf{C} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \downarrow & & \downarrow \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary: Solving Systems of Linear ODEs via Diagonalization, Cont'd

3. Solve the decoupled system (easy)

$$\frac{d\mathbf{y}}{dt} = \mathbf{D}\mathbf{y}(t) \quad \Rightarrow \quad \mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

 Transform the decoupled solutions back to solutions x (t) of the original system

$$\mathbf{x}\left(t
ight)=\mathbf{C}\mathbf{y}\left(t
ight)$$