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Orthogonal Decompositions of Vectors
Consider two vectors in a plane



Orthogonal Decompositions of Vectors
Consider two vectors in a plane

From the diagram above, we have

a = ab + a⊥ (*)

We say that

▶ Equation (*) is the orthogonal decomposition of a vector a
with respect to the direction of b,

▶ ab is the component of a in the direction of b, and
▶ a⊥ is the component of a perpendicular to b



Orthogonal Projections

The vector ab is also called the orthogonal projection of a on b,
because if we had a flashlight oriented perpendicularly to the
vector b, the “shadow” of the vector a along b would be precisely
the vector ab.



Let’s now bring in a little high school trigonometry.

We have

∥ab∥ = ∥a∥ cos (θ)
∥a⊥∥ = ∥a∥ sin (θ)



Back to Linear Algebra

Early on in this course, we learned that the vector dot product

a · b ≡ a1b1 + · · ·+ anbn

provides us with a means of determining lengths and angles in Rn.

a · b = ∥a∥ ∥b∥ cos θab

Here

∥a∥ =
√
a · a ≡ the length of a

∥b∥ =
√
b · b ≡ the length of b

θab = the angle between a and b in the plane spanned by a and b



So from

we have

∥ab∥ = ∥a∥ cos (θab)

= ∥a∥ a · b
∥a∥ ∥b∥

=
a · b
∥b∥



Since ab has the same direction as b, we can recover the vector ab
by multiplying the unit vector

b̂ =
b

∥b∥

in the direction of b by the length ∥ab∥.
And so

ab = ∥ab∥ b̂ =
a · b
∥b∥

b

∥b∥
=

a · b
∥b∥2

b =
a · b
b · b

b



Thus,

Theorem
Let a and b be two vectors in Rn. Write

a = ab + a⊥

for the orthogonal decomposition of a with respect to the direction
of b. Then

ab =
a · b
b · b

b

a⊥ = a− a · b
b · b

b



Example 1
Find the orthogonal decomposition of a = [1, 2, 1] with respect to
the direction of b = [1,−1, 0].
We have

ab =
a · b
b · b

b

=
(1)(1) + (2)(−1) + (1)(0)

(1)2 + (−1)2 + (0)2
[1,−1, 0]

= −1

2
[1,−1, 0] =

[
1

2
,−1

2
, 0

]
and

a⊥ = a− ab

= [1, 2, 1]−
[
1

2
,−1

2
, 0

]
=

[
1

2
,
5

2
, 1

]



Example 1, Cont’d

and so, the orthogonal decomposition of a = [1, 2, 1] with respect
to the direction of b = [1,−1, 0] is

a = ab + a⊥

=

[
1

2
,−1

2
, 0

]
+

[
1

2
,
5

2
, 1

]



Othogonal Projections onto Subspaces

We’ll now generalize these ideas.

Problem
Given a vector v ∈ Rn and a subspace W of Rn. What component
of v lies along the directions in W?



Othogonal Projections onto Subspaces, Cont’d

We will show that there are unique vectors v⊥ and vW such that

▶ vW ∈W

▶ v⊥ is perpendicular to every vector in W

▶ v = vW + v⊥

We will call vW the orthogonal projection of a vector v onto W .
It will be exactly the component of v that lies in the subspace W .

The equation v = vW + v⊥ is called the orthogonal
decomposition of the vector v with respect to the subspace W .



Digression: The Orthogonal Complement, W⊥, of a
subspace W

Let W be a k-dimensional subspace with basis BW = {b1, . . . ,bk}.

The first thing we shall do is construct a subspace W⊥ of Rn that
is perpendicular to every vector in W .
That is to say, we seek a subspace W⊥ ⊂ Rn such that

v ∈W⊥ =⇒ v ·w = 0 for every vector w ∈W

Since every vector in W can be written

w = w1b1 + w2b2 + · · ·+ wkbk

an easy way to impose the condition v ·w = 0 for all vectors
w ∈W , would be to demand

v · bi = 0 for i = 1, . . . , k



These k conditions on v can then be expressed as a matrix
equation 0

...
0

 =

 b1 · v
...

bk · v

 =

 ←− b1 −→
...

←− bk −→


 v1

...
vn


In other words, the vector v will have to lie in the null space of the
k × n matrix formed by using the (n-dimensional) basis vectors bi
as rows. Set

W⊥ ≡ NullSp


 ←− b1 −→

...
←− bk −→




We have thus set things up so that

v ∈W⊥ ⇐⇒ v ·w = 0 for all w ∈W

The space W⊥ is called the orthogonal complement to W in Rn



Next, note that since the vectors b1, . . . ,bk form a basis, they
must be linearly independent. Therefore the matrix

AW ,B =

 ←− b1 −→
...

←− bk −→


has k linearly independent row vectors and so has rank k . But
then, since

n = # columns of AW ,B

= rank (AW ,B) + dim (NullSp (AW ,B))

= k + dim (NullSp (AW ,B))

So a basis BW⊥ for W⊥ = NullSp (AW ,B) will have n − k vectors.
Let us write such a basis as

BW⊥ = {bk+1, . . . ,bn}



Lemma
The set {b1, . . . ,bk ,bk+1, . . . ,bn} where {b1, . . . ,bk} is our given
basis for W and {bk+1, . . . ,bn} is a basis for the null space of
AW ,B , is a basis for Rn.

Proof.

c1b1 + · · ·+ ckbk + ck+1bk+1 + · · ·+ cnbn = 0

Then we’d have

c1b1 + · · ·+ ckbk = −ck+1bk+1 − · · · − cnbn (*)

Set

v1 = c1b1 + · · ·+ ckbk ∈W

v2 = ck+1bk+1 + · · ·+ cnbn ∈W⊥

so that (*) becomes
v1 = −v2 (**)



Proof of Lemma, Cont’d
Since every vector in W⊥ is perpendicular to every vector in W ,
we must have

v1 · v2 = 0

But then if we take the dot product of both sides of (**) with v1,
we get

∥v1∥2 = v1 · v1 = −v1 · v2 = 0 ⇒ v1 = 0

But then (**) implies

0 = v1 = −v2 ⇒ v2 = 0

Finally, since {b1, . . . ,bk} is a basis for W

0 = v1 = c1b1 + · · ·+ ckbk ⇒ c1 = 0, . . . , ck = 0

and, similarly, since {bk+1, . . . ,bn} is a basis for W⊥, we have

0 = v2 = ck+1bk+1 + · · ·+ cnbn ⇒ ck+1 = 0, . . . , cn = 0

Thus, all coefficients c1, . . . , cn must separately vanish.



Proof of Lemma, Cont’d

So we’ve shown that

c1b1 + · · ·+ ckbk + ck+1bk+1 + · · ·+ cnbn = 0

requires
c1 = 0, . . . , cn = 0

Thus, the n vectors {b1, . . . ,bk ,bk+1, . . . ,bn} are linearly
independent, and hence form a basis for Rn.



Let’s now return to the original problem of finding the orthogonal
decomposition of a vector v with respect to a subspace W .

Theorem
Let W be a subspace of Rn. Then every vector v in Rn has a
unique decomposition

v = vW + vW⊥

with vW ∈W and vW⊥ ∈W⊥.

Sketch of Proof. We again fix a basis BW = {b1, . . . ,bk} of W
and a basis BW⊥ = {bk+1, . . . ,bn} for W⊥ where

W⊥ = NullSp


 ←− b1 −→

...
←− bk −→




The preceding lemma tells us that BW ∪ BW⊥ is a basis for Rn.



Proof of Theorem, Cont’d

Thus, every vector v ∈ Rn has a unique expression as

v = c1b1 + · · ·+ ckbk + ck+1bk+1 + · · ·+ cnbn

= (c1b1 + · · ·+ ckbk) + (ck+1bk+1 + · · ·+ cnbn)

= vW + vW⊥

where

vW = c1b1 + · · ·+ ckbk ∈ W

vW⊥ = ck+1bk+1 + · · ·+ cnbn ∈ W⊥



Algorithm for Determining vW and vW⊥

We now summarize the algorithms used in the Lemma and
Theorem to obtain the splitting v = vW + vW⊥ .

▶ Find a basis BW = {b1, . . . ,bk} for W
▶ Find a basis BW⊥ = {bk+1, . . . ,bn} for W⊥ = NullSp (AW ,B)

▶ Find the coordinate vector vB of v with respect to the basis
B = {b1, . . . ,bk ,bk+1, . . . ,bn} of Rn using the row reduction | | |

b1 · · · bn v
| | |

 −→

 1 · · · 0 |
... · · ·

... vB
0 1 |

 = [I | vB ]



Algorithm for Determining vW and vW⊥, Cont’d

▶ Set

vW = c1b1 + · · ·+ ckbk

vW⊥ = ck+1bk+1 + · · ·+ cnbn

where ci , is the i th component of the coordinate vector vB .

▶ We then have
v = vW + vW⊥

as the orthogonal decomposition of v with respect to the
subspace W .


