Lecture 34 : Orthogonal Decompositions

Math 3013 Oklahoma State University

April 22, 2022

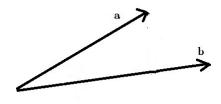
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Agenda:

- 1. Orthogonal Decompositions of Vectors
- 2. Orthogonal Projection of a Vector onto a Vector
- 3. Orthogonal Projections onto Subspaces
- 4. Examples

Orthogonal Decompositions of Vectors

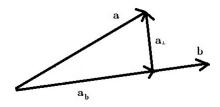
Consider two vectors in a plane



<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Orthogonal Decompositions of Vectors

Consider two vectors in a plane



From the diagram above, we have

$$\mathbf{a} = \mathbf{a}_{\mathbf{b}} + \mathbf{a}_{\perp} \tag{(*)}$$

3

We say that

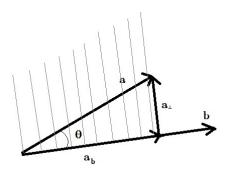
Equation (*) is the orthogonal decomposition of a vector a with respect to the direction of b,

a_b is the component of a in the direction of b, and

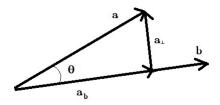
• a_{\perp} is the component of a perpendicular to b

Orthogonal Projections

The vector $\mathbf{a}_{\mathbf{b}}$ is also called **the orthogonal projection of a on b**, because if we had a flashlight oriented perpendicularly to the vector \mathbf{b} , the "shadow" of the vector \mathbf{a} along \mathbf{b} would be precisely the vector \mathbf{a}_{b} .



Let's now bring in a little high school trigonometry.



We have

$$\|\mathbf{a}_{\mathbf{b}}\| = \|\mathbf{a}\|\cos\left(\theta\right)$$
$$\|\mathbf{a}_{\perp}\| = \|\mathbf{a}\|\sin\left(\theta\right)$$

イロト イヨト イヨト イヨト

ж

Back to Linear Algebra

Early on in this course, we learned that the vector dot product

$$\mathbf{a} \cdot \mathbf{b} \equiv a_1 b_1 + \cdots + a_n b_n$$

provides us with a means of determining lengths and angles in \mathbb{R}^n .

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta_{\mathbf{ab}}$$

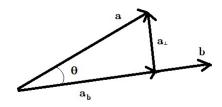
Here

$$\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}} \equiv$$
 the length of \mathbf{a}

$$\|\mathbf{b}\| = \sqrt{\mathbf{b} \cdot \mathbf{b}} \equiv \text{the length of } \mathbf{b}$$

 θ_{ab} = the angle between **a** and **b** in the plane spanned by **a** and **b**

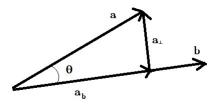
So from



we have

$$\|\mathbf{a}_{\mathbf{b}}\| = \|\mathbf{a}\| \cos\left(\theta_{\mathbf{a}\mathbf{b}}\right)$$
$$= \|\mathbf{a}\| \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$$
$$= \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$$

(ロ)、(型)、(E)、(E)、 E) の(()



Since $\mathbf{a}_{\mathbf{b}}$ has the same direction as \mathbf{b} , we can recover the vector $\mathbf{a}_{\mathbf{b}}$ by multiplying the unit vector

$$\widehat{\mathbf{b}} = \frac{\mathbf{b}}{\|\mathbf{b}\|}$$

in the direction of \boldsymbol{b} by the length $\|\boldsymbol{a}_{\boldsymbol{b}}\|.$ And so

$$\mathbf{a}_{\mathbf{b}} = \|\mathbf{a}_{\mathbf{b}}\| \, \widehat{\mathbf{b}} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|} \frac{\mathbf{b}}{\|\mathbf{b}\|} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}$$

イロト 不得 トイヨト イヨト

э

Thus,

Theorem Let **a** and **b** be two vectors in \mathbb{R}^n . Write

$$\mathsf{a}=\mathsf{a}_\mathsf{b}+\mathsf{a}_\perp$$

for the orthogonal decomposition of \mathbf{a} with respect to the direction of \mathbf{b} . Then

$$\begin{aligned} \mathbf{a}_{\mathbf{b}} &=& \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \\ \mathbf{a}_{\perp} &=& \mathbf{a} - \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example 1

Find the orthogonal decomposition of ${\bf a}=[1,2,1]$ with respect to the direction of ${\bf b}=[1,-1,0].$ We have

$$\mathbf{a_b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}$$

$$= \frac{(1)(1) + (2)(-1) + (1)(0)}{(1)^2 + (-1)^2 + (0)^2} [1, -1, 0]$$

$$= -\frac{1}{2} [1, -1, 0] = \left[\frac{1}{2}, -\frac{1}{2}, 0\right]$$

and

$$\mathbf{a}_{\perp} = \mathbf{a} - \mathbf{a}_{b}$$

$$= [1, 2, 1] - \left[\frac{1}{2}, -\frac{1}{2}, 0\right]$$

$$= \left[\frac{1}{2}, \frac{5}{2}, 1\right]$$

and so, the orthogonal decomposition of $\bm{a}=[1,2,1]$ with respect to the direction of $\bm{b}=[1,-1,0]$ is

$$\mathbf{a} = \mathbf{a}_{\mathbf{b}} + \mathbf{a}_{\perp}$$
$$= \left[\frac{1}{2}, -\frac{1}{2}, 0\right] + \left[\frac{1}{2}, \frac{5}{2}, 1\right]$$

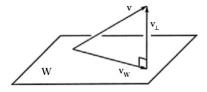
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Othogonal Projections onto Subspaces

We'll now generalize these ideas.

Problem

Given a vector $\mathbf{v} \in \mathbb{R}^n$ and a subspace W of \mathbb{R}^n . What component of \mathbf{v} lies along the directions in W?



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Othogonal Projections onto Subspaces, Cont'd

We will show that there are unique vectors \boldsymbol{v}_{\perp} and \boldsymbol{v}_{W} such that

- \blacktriangleright $\mathbf{v}_W \in W$
- \mathbf{v}_{\perp} is perpendicular to every vector in W

$$\blacktriangleright$$
 v = v_W + v_⊥

We will call \mathbf{v}_W the **orthogonal projection** of a vector **v** onto W. It will be exactly the component of **v** that lies in the subspace W.

The equation $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_\perp$ is called the **orthogonal decomposition** of the vector \mathbf{v} with respect to the subspace W.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Digression: The Orthogonal Complement, W^{\perp} , of a subspace W

Let *W* be a *k*-dimensional subspace with basis $B_W = {\mathbf{b}_1, \ldots, \mathbf{b}_k}$.

The first thing we shall do is construct a subspace W^{\perp} of \mathbb{R}^n that is perpendicular to every vector in W. That is to so a provide the second se

That is to say, we seek a subspace $W^{\perp} \subset \mathbb{R}^n$ such that

$$\mathbf{v} \in W^{\perp} \implies \mathbf{v} \cdot \mathbf{w} = 0$$
 for every vector $\mathbf{w} \in W$

Since every vector in W can be written

$$\mathbf{w} = w_1 \mathbf{b}_1 + w_2 \mathbf{b}_2 + \cdots + w_k \mathbf{b}_k$$

an easy way to impose the condition $\mathbf{v} \cdot \mathbf{w} = 0$ for all vectors $\mathbf{w} \in W$, would be to demand

$$\mathbf{v} \cdot \mathbf{b}_i = 0$$
 for $i = 1, \dots, k$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

These k conditions on \mathbf{v} can then be expressed as a matrix equation

$$\begin{bmatrix} 0\\ \vdots\\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \cdot \mathbf{v}\\ \vdots\\ \mathbf{b}_k \cdot \mathbf{v} \end{bmatrix} = \begin{bmatrix} \longleftarrow & \mathbf{b}_1 & \longrightarrow \\ \vdots & \vdots\\ \longleftarrow & \mathbf{b}_k & \longrightarrow \end{bmatrix} \begin{bmatrix} v_1\\ \vdots\\ v_n \end{bmatrix}$$

In other words, the vector **v** will have to lie in the null space of the $k \times n$ matrix formed by using the (*n*-dimensional) basis vectors **b**_i as rows. Set

$$W^{\perp} \equiv NullSp\left(\begin{bmatrix} \longleftarrow & \mathbf{b}_1 & \longrightarrow \\ & \vdots & \\ \leftarrow & \mathbf{b}_k & \longrightarrow \end{bmatrix} \right)$$

We have thus set things up so that

$$\mathbf{v} \in W^{\perp} \iff \mathbf{v} \cdot \mathbf{w} = 0$$
 for all $\mathbf{w} \in W$

The space W^{\perp} is called the **orthogonal complement to** W in \mathbb{R}^n

Next, note that since the vectors $\mathbf{b}_1, \ldots, \mathbf{b}_k$ form a basis, they must be linearly independent. Therefore the matrix

$$\mathbf{A}_{W,B} = \begin{bmatrix} \longleftarrow & \mathbf{b}_1 & \longrightarrow \\ & \vdots & \\ \leftarrow & \mathbf{b}_k & \longrightarrow \end{bmatrix}$$

has k linearly independent row vectors and so has rank k. But then, since

$$n = \# \text{ columns of } \mathbf{A}_{W,B}$$

= rank ($\mathbf{A}_{W,B}$) + dim (NullSp ($\mathbf{A}_{W,B}$))
= k + dim (NullSp ($\mathbf{A}_{W,B}$))

So a basis $B_{W^{\perp}}$ for $W^{\perp} = NullSp(\mathbf{A}_{W,B})$ will have n - k vectors. Let us write such a basis as

$$B_{W^{\perp}} = \{\mathbf{b}_{k+1}, \ldots, \mathbf{b}_n\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

The set $\{\mathbf{b}_1, \ldots, \mathbf{b}_k, \mathbf{b}_{k+1}, \ldots, \mathbf{b}_n\}$ where $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$ is our given basis for W and $\{\mathbf{b}_{k+1}, \ldots, \mathbf{b}_n\}$ is a basis for the null space of $\mathbf{A}_{W,B}$, is a basis for \mathbb{R}^n . Proof.

$$c_1\mathbf{b}_1+\cdots+c_k\mathbf{b}_k+c_{k+1}\mathbf{b}_{k+1}+\cdots+c_n\mathbf{b}_n=\mathbf{0}$$

Then we'd have

$$c_1\mathbf{b}_1 + \cdots + c_k\mathbf{b}_k = -c_{k+1}\mathbf{b}_{k+1} - \cdots - c_n\mathbf{b}_n \qquad (*)$$

Set

$$\mathbf{v}_1 = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k \in W$$

$$\mathbf{v}_2 = c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n \in W^{\perp}$$

so that (*) becomes

$$\mathbf{v}_1 = -\mathbf{v}_2 \tag{(**)}$$

Proof of Lemma, Cont'd

Since every vector in W^{\perp} is perpendicular to every vector in W, we must have

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$$

But then if we take the dot product of both sides of (**) with \mathbf{v}_1 , we get

$$\|\mathbf{v}_1\|^2 = \mathbf{v}_1 \cdot \mathbf{v}_1 = -\mathbf{v}_1 \cdot \mathbf{v}_2 = 0 \quad \Rightarrow \quad \mathbf{v}_1 = \mathbf{0}$$

But then (**) implies

$$\mathbf{0} = \mathbf{v}_1 = -\mathbf{v}_2 \quad \Rightarrow \quad \mathbf{v}_2 = \mathbf{0}$$

Finally, since $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ is a basis for W

$$\mathbf{0} = \mathbf{v}_1 = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k \quad \Rightarrow \quad c_1 = 0, \dots, c_k = 0$$

and, similarly, since $\{\mathbf{b}_{k+1},\ldots,\mathbf{b}_n\}$ is a basis for W^{\perp} , we have

$$\mathbf{0} = \mathbf{v}_2 = c_{k+1}\mathbf{b}_{k+1} + \dots + c_n\mathbf{b}_n \quad \Rightarrow \quad c_{k+1} = 0, \dots, c_n = 0$$

Thus, all coefficients c_1, \ldots, c_n must separately vanish.

Proof of Lemma, Cont'd

So we've shown that

$$c_1\mathbf{b}_1+\cdots+c_k\mathbf{b}_k+c_{k+1}\mathbf{b}_{k+1}+\cdots+c_n\mathbf{b}_n=\mathbf{0}$$

requires

$$c_1=0,\ldots,c_n=0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Thus, the *n* vectors $\{\mathbf{b}_1, \ldots, \mathbf{b}_k, \mathbf{b}_{k+1}, \ldots, \mathbf{b}_n\}$ are linearly independent, and hence form a basis for \mathbf{R}^n .

Let's now return to the original problem of finding the orthogonal decomposition of a vector \mathbf{v} with respect to a subspace W.

Theorem

Let W be a subspace of \mathbb{R}^n . Then every vector \mathbf{v} in \mathbb{R}^n has a unique decomposition

$$\mathbf{v} = \mathbf{v}_W + \mathbf{v}_{W^\perp}$$

with $\mathbf{v}_W \in W$ and $\mathbf{v}_{W^{\perp}} \in W^{\perp}$.

Sketch of Proof. We again fix a basis $B_W = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ of W and a basis $B_{W^{\perp}} = {\mathbf{b}_{k+1}, \dots, \mathbf{b}_n}$ for W^{\perp} where

$$W^{\perp} = NullSp\left(\begin{bmatrix} \longleftarrow & \mathbf{b}_1 & \longrightarrow \\ & \vdots & \\ \leftarrow & \mathbf{b}_k & \longrightarrow \end{bmatrix} \right)$$

The preceding lemma tells us that $B_W \cup B_{W^{\perp}}$ is a basis for \mathbb{R}^n .

(ロ)、

Proof of Theorem, Cont'd

Thus, every vector $\mathbf{v} \in \mathbb{R}^n$ has a unique expression as

$$\mathbf{v} = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k + c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n$$

= $(c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k) + (c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n)$
= $\mathbf{v}_W + \mathbf{v}_{W^{\perp}}$

where

$$\mathbf{v}_{W} = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k \in W$$
$$\mathbf{v}_{W^{\perp}} = c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n \in W^{\perp}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Algorithm for Determining \mathbf{v}_W and $\mathbf{v}_{W^{\perp}}$

We now summarize the algorithms used in the Lemma and Theorem to obtain the splitting $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_{W^{\perp}}$.

- Find a basis $B_W = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ for W
- Find a basis $B_{W^{\perp}} = \{\mathbf{b}_{k+1}, \dots, \mathbf{b}_n\}$ for $W^{\perp} = NullSp(\mathbf{A}_{W,B})$
- Find the coordinate vector \mathbf{v}_B of \mathbf{v} with respect to the basis $B = {\mathbf{b}_1, \dots, \mathbf{b}_k, \mathbf{b}_{k+1}, \dots, \mathbf{b}_n}$ of \mathbb{R}^n using the row reduction

$$\begin{bmatrix} | & | & | & | \\ \mathbf{b}_1 & \cdots & \mathbf{b}_n & \mathbf{v} \\ | & | & | & | \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & \cdots & 0 & | \\ \vdots & \cdots & \vdots & \mathbf{v}_B \\ 0 & 1 & | & | \end{bmatrix} = [\mathbf{I} \mid \mathbf{v}_B]$$

Algorithm for Determining \mathbf{v}_W and $\mathbf{v}_{W^{\perp}}$, Cont'd

Set

$$\mathbf{v}_W = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k$$
$$\mathbf{v}_{W^{\perp}} = c_{k+1} \mathbf{b}_{k+1} + \dots + c_n \mathbf{b}_n$$

where c_i , is the *i*th component of the coordinate vector \mathbf{v}_B . \blacktriangleright We then have

 $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_{W^{\perp}}$

as the orthogonal decomposition of \mathbf{v} with respect to the subspace W.