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Lecture 36

1. Orthonormal Bases
2. The Gram-Schmid Process



Orthogonality and Bases
One of the most useful properties of the standard basis [e1, . . . , en]
of Rn is the fact that

ei · ej = δij ≡
{

1 if i = j
0 if i ̸= j

(1)

For example, this property allows us to easily determine the
component of a vector v along the i th basis vector ei by simply
computing its inner product with ei :
For if

v = v1e1 + · · ·+ vnen

Then

ei · v = ei · (v1e1 + · · ·+ vnen)

= v1ei · e1 + v2ei · e2 + · · ·+ viei · ei + · · ·+ vnei · en
= 0 + 0 + · · ·+ 0 + vi + 0 + · · ·+ 0

= vi



This circumstance is not true for a more general basis.

For a more general basis B = {b1, . . . ,bn}, in order to find the
constants c1, . . . , cn such that

v = c1b1 + · · ·+ cnbn

you have to solve the linear system ↑ ↑
b1 · · · bn
↓ ↓


 c1

...
cn

 =

 v1
...
vn


which is a much more strenuous task.



On the other hand, we have lots and lots of choices of bases for Rn

or for any subspace W of Rn .

What we shall be developing in today’s lecture is a way to contruct
bases B = {n1, . . . ,nn} that have orthogonality and normalization
properties just like E = {e1, , . . . , en}

ni · nj = δij ≡
{

1 if i = j
0 if i ̸= j

For such orthonormal bases, we will be able to rapidly determine
the coefficients ci such that

v = c1n1 + · · ·+ cnnn

by simply computing inner products

ci = ni · v



Remark

The reason for the nomenclature orthonormal basis is because
the condition

ni · nj = δij

implies that the distinct basis vectors are not only orthogonal to
one another

ni · nj = 0 if i ̸= j

and they are “normalized” so that they have unit length

∥ni∥ =
√
ni · ni =

√
1 = 1



Summary: Orthonormal Bases

A set of vectors B = {n1, . . . ,nk} of vectors in W is an
orthonormal basis if

(i) W = span (n1, . . . ,nk)

(ii) {n1, . . . ,nk} are linearly independent

(iii) ni · nj = 0 if i ̸= j

(iv) ni · ni = 1 for all i

When B = {n1, . . . ,nk} is an orthonormal basis for a subspace W
then it’s easy to find the coordinate vector vB of a vector v with
respect to the basis B,

v = c1n1 + · · ·+ cknk ⇒ ci = ni · v , i = 1, . . . , k

Actually, these conditions are somewhat redundant, We’ll see next
that condition (iii) actually implies condition (ii).



Orthogonality and Linear Independence

Lemma
Any set of non-zero, mutually orthogonal vectors is linearly
independent.

Proof. Let {v1, . . . , vk} be a set of vectors such that

vi · vj = 0 if i ̸= j

From the definition of linear independence, we need to show that
the equation

c1v1 + · · ·+ ckvk = 0 (*)

can only be satisfied by setting each coefficient ci equal to 0.



Proof of Lemma, Cont’d

So suppose
0 = c1v1 + · · ·+ ckvk (*)

Taking the dot product of both sides of (*) with v1 yields

0 = c1 (v1 · v1) + 0 + · · ·+ 0

⇒ c1 = 0 since v1 · v1 = ∥v1∥2 ̸= 0

Likewise, taking the dot product of both sides with vi leads to
ci = 0 for all i . Thus,

(∗) =⇒ c1 = 0, . . . , ck = 0

and so the vectors {v1, . . . , vk} are linearly independent.



The Gram-Schmidt Process

The Gram-Schmidt Process is an algorithm by which one can
create from any basis B = {b1, . . . ,bk}, an orthogonal basis
B ′ = {o1, . . . , ok} for which

oi · oj = 0 wherever i ̸= j

This algorithm begins with setting

o1 = b1

Next, we want a second basis vector, o2 that’s perpendicular to o1.



The Gram-Schmidt Process, Cont’d

In Lecture 34, we learned that if a and b are two vectors we can
decompose a into two components:

a = ab + a⊥

where

ab =
a · b
b · b

b , a⊥ = a− a · b
b · b

b

Here ab has the same direction as the vector b and the direction of
a⊥ is perpendicular to that of b.



The Gram-Schmidt Process, Cont’d

Using a similar orthogonal decomposition, with o1 playing the role
of b and b2 playing the role of a, we can split b2 into a component
(b2)||o1 that runs parallel to o1, and a component (b2)⊥o1

that is
runs perpendicular to o1:

b2 = (b2)||o1 + (b2)⊥o1

We then set

o2 = (b2)⊥o1
= b2 − (b2)||o1 = b2 −

o1 · b2
o1 · o1

o1

Then o2 is automatically perpendicular to o1. The vector o2
constructed in this way will be our second orthogonal basis vector.
Note that, by the Lemma, {o1, o2} are also automatically linearly
independent, since o1 and o2 are non-zero orthogonal vectors.



It’s helpful to understand this construction of o2 as simply
removing from b2 the component that runs parallel to o1.
Because that’s essentially how we’ll get the other orthogonal basis
vectors.

For instance, to get a third basis vector that orthogonal to both o1
and o2, we start with b3, and remove from it, both the part that
runs parallel to o1 and the part of b3 that runs parallel to o2:

o3 = b3 − (b3)||o1 − (b3)||o2 = b3 −
o1 · b3
o1 · o1

o1 −
o2 · b3
o2 · o2

o2

and then {o1, o2, o3} will be an orthogonal basis for
span (o1, o2, o3)
And we can similarly construct more orthogonal vectors o4, o5 · · · ,
until we reach

ok = bk −
o1 · bk
o1 · o1

o1 −
o2 · bk
o2 · o2

o2 − · · · − ok−1 · b3
ok−1 · ok−1

ok−1



In this way, we end up with a set of k mutually orthogonal, and so
linear independent, vectors in W .
But any set of k linearly independent vectors in a k-dimensional
space W will be a basis for W .
So B ′ = {o1, . . . , ok}, so constructed, will be an orthogonal basis
for W = span (b1, . . . ,bk).



The Gram-Schmidt Process

The Gram-Schmidt Process is the following algorithm.
Given any basis B = {b1, . . . ,bk} for a subspace W , we can
systematically construct an orthogonal basis B ′ = {o1, . . . , ok} for
W , by setting

o1 = b1

o2 = b2 −
o1 · b2
o1 · o1

o1

o3 = b3 −
o1 · b3
o1 · o1

o1 −
o2 · b3
o2 · o2

o2

...

ok = bk −
o1 · bk
o1 · o1

o1 −
o2 · bk
o2 · o2

o2 − · · · − ok−1 · b3
ok−1 · ok−1

ok−1



The basis {o1, · · · , ok} obtained by the above algorithm, however,
is an orthogonal basis, but not yet an orthonormal basis. For
the vectors oi while mutually orthogonal do not necessarily have
the length 1.

But there is an easy fix for this. All we have to do is divide each of
the orthogonal basis vectors oi by their lengths ∥oi∥ =

√
oi · oi to

get a set of k , mutually orthogonal, linearly independent vectors,
all of length 1 :

o1 −→ n1 =
1

√
o1 · o1

o1

...

ok −→ nk =
1

√
ok · ok

ok

The vectors {n1, · · · ,nk} so obtained will be an orthonormal
basis for W .



Example
Find a orthonormal basis for the subspace

W = span ([1,−1, 1, 0] , [−1, 0, 0, 1] , [0, 0, 1, 1])

of R5.
First we need a basis for W . 1 −1 1 0

−1 0 0 1
0 0 1 1

 −→

 1 −1 1 0
0 −1 1 1
0 0 1 1


This last matrix is in row echelon form with no non-zero rows.
From this calculation we can conclude that the original three
vectors are linearly independent and so will constitute a basis for
W .
We can thus begin with the basis B = {b1,b2,b3} with

b1 = [1,−1, 1, 0]

b2 = [−1, 0, 0, 1]

b3 = [0, 0, 1, 1]

as an initial basis to start the Gram-Schmidt Process.



Thus, we set

o1 = b1 = [1,−1, 1, 0]

=⇒ ∥o1∥2 = 3

=⇒ n1 =

[
1√
3
,− 1√

3
,
1√
3
, 0

]
Next we compute o2,

o2 = b2 −
o1 · b2
o1 · o1

o1

= [−1, 0, 0, 1]− (−1)

3
[1,−1, 1, 0]

=

[
−2

3
,−1

3
,
1

3
, 1

]
We have

∥o2∥2 =
4

9
+

1

9
+

1

9
+ 1 =

5

3

=⇒ n2 =
o2

∥o2∥
=

√
3

5

[
−2

3
,−1

3
,
1

3
, 1

]



And, finally,

o3 = b3 −
o1 · b3
o1 · o1

o1 −
o2 · b3
o2 · o2

o2

= [0, 0, 1, 1]− (1)

3
[1,−1, 1, 0]−

4
3
5
3

[
−2

3
,−1

3
,
1

3
, 1

]
=

[
1

5
,
3

5
,
2

5
,
1

5

]
and

∥o3∥2 =
1 + 9 + 4 + 1

25
=

3

5
so

n3 =

√
5

3

[
1

5
,
3

5
,
2

5
,
1

5

]



Thus,

B ′ =

{[
1√
3
,− 1√

3
,
1√
3
, 0

]
,

√
3

5

[
−2

3
,−1

3
,
1

3
, 1

]
,√

5

3

[
1

5
,
3

5
,
2

5
,
1

5

]}

will be an orthonormal basis for W .
So now if one wants to determine the coefficients c1, c2, c3 in the
expansion

v = c1n1 + c2n2 + c3n3

of a vector v w.r.t. the orthonormal basis B ′, we just need to
compute some dot products

c1 = n1 · v
c2 = n2 · v
c3 = n3 · v


