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Agenda:
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3. Bases and Coordinatization of Generalized Vector Spaces
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Generalized Vector Spaces

Notation. Let S and T be two sets. The Cartesian product of S
and T , denoted S × T , is the set

S × T = {(s, t) | s ∈ S and t ∈ T}

i.e., the set of all ordered pairs of elements of S and T .

Definition
A vector space over R is a set V for which the following operations
are defined

▶ scalar multiplication: for every λ ∈ R and v ∈ V we have a
map ∗V : R× V → V : (λ, v)→ λ ∗V v ∈ V .

▶ vector addition: for every pair of vectors u, v ∈ V we have a
map +V : V × V → V : (u, v)→ u+V v ∈ V



Definition of Generalized Vector Spaces, Cont’d
In addition, the operations of vector addition and scalar
multiplication must also satisfy the following axioms

1. (u+V v) +V w = u+V (v +V w) (associativity of vector
addition)

2. u+V v = v +V u (commutativity of vector addition)

3. There exists an element 0V ∈ V such that v +V 0V = v for
all v ∈ V . (additive identity.)

4. For each v ∈ V there exists an element −v ∈ V such that
v +V (−v) = 0V . (additive inverses)

5. λ ∗V (u+V v) = λ ∗V u+V λ ∗V v (scalar multiplication is
distributive with respect to vector addition).

6. (λ+R µ) ∗v v = λ ∗V v +V µ ∗V v. (scalar multiplication is
distributes over addition of scalars)

7. λ ∗V (µ ∗V v) = (λ ∗R µ)v (scalar multiplication preserves
associativity of multiplication in R.)

8. (1) ∗V v = v (preservation of scale).



Example of a General Vector Space
Definition. Let V ≡ {f : R→ R} be the set of all functions on
the real line together with the following two operations

▶ Scalar Multiplication:

∗V : R× V → V , (λ, v)→ λ ∗V v

where λ ∗V v is the function

(λ ∗V v) (x) ≡ λ ∗R v (x)

▶ Vector Addition

+V : V × V → V , (f , g)→ f +V g

where
(f +V g) (x) ≡ f (x) +R g (x)

Note: We regard a function f : R→ R as being uniquely identified
once we provide a formula for the values f (x) at all points x ∈ R.



Example : V = {f : R→ R}

Theorem
The set V together with its operations ∗V and +V is a general
vector space over R.

Proof. We have 8 axioms to verify.



V = {f : R→ R} : 1. Associativity of Vector Addition

Let f , g , h ∈ V . We need to show

(f +V g) +V h = f +V (g +V h) (1)

Evaluating the left hand side at a point x ∈ R, we have

[(f +V g) +V h] (x) ≡ (f +V g) (x) +R h (x)

= (f (x) +R g (x)) +R h (x)

while, on the right, we’d have

[f +V (g +V h)] (x) ≡ f (x) +R (g +V h) (x)

= f (x) +R (g (x) +R h (x))

Since addition of real numbers is associative, we have

(f (x) +R g (x))+R h (x) = f (x)+R (g (x) +R h (x)) , ∀ x ∈ R



V = {f : R→ R} : 1. Associativity of Vector Addition,
Cont’d

And so

[(f +V g) +V h] (x) = [f +V (g +V h)] (x) , ∀ x ∈ R

Since the value of the function (f +V g) +V h is exactly the same
as the value of the function f +V (g +V h) at all points x ∈ R, the
two functions must be same and so (1) is proved.



V = {f : R→ R} : 2. Commutativity of Vector Addition

Let f , g ∈ V . We need to show

f +V g = g +V f (2)

To show that the two functions are equal, we evaluate both sides
at an arbitrary point x ∈ R.

(f +V g) (x) =? (g +V f ) (x)
q q

f (x) +R g (x) = g (x) +R f (x)
✓

because addition of real numbers is commutative.



V = {f : R→ R} : 3. Additive Identity

Let f0 be the function defined by

f0 (x) = 0 , ∀ x ∈ R

Then f0 ∈ V , and, for any other function g ∈ V

(f0 +V g) = g (3)

For

(f0 +V g) (x) = f0 (x) +R g (x) = 0+R g (x) = g (x) , ∀ x ∈ R

And so f0 acts as the zero vector 0V in V .



V = {f : R→ R} : 4. Additive Inverses

For any f ∈ V , let −f be the function defined by

(−f ) (x) ≡ (−1) ∗R f (x)

Note −f ∈ V and we have

(f +V (−f )) (x) = f (x)− f (x) = 0 , ∀ x ∈ R

and so
f + (−f ) = f0 ≡ 0 ∈ V , ∀ f ∈ V (4)



Example {f : R→ R} - Conclusion

We have four more properties to prove.

5. λ ∗V (u+V v) = λ ∗V u+V λ ∗V v

6. (λ+R µ) ∗v v = λ ∗V v +V µ ∗V v.

7. λ ∗V (µ ∗V v) = (λ ∗R µ)v

8. (1) ∗V v = v

However, just as for the first two axioms, these properties follow by
meticulously applying the definitions of ∗V and +V and then
using a corresponding property of real numbers.
I’ll forgo the proofs of the last four properties/axioms.



Definitions and Theorems for Generalized Vector Spaces

Henceforth, we’ll simplify our notation, using + for +V , and λv for
λ ∗V v.

▶ Def. Let V be a generalized vector space and let {v1, . . . , vk}
be a set of vectors in V : A linear combination of the vectors
v1, . . . , vk is an expression of the form

c1v1 + · · ·+ ckvk , c1, . . . , ck ∈ R

▶ Def. The span of the vectors v1, . . . , vk is the set of all
possible linear combinations of the vectors v1, . . . , vk :

span (v1, . . . , vk) = {c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ R}



Definitions and Theorems, Cont’d

▶ Def. A subspace of a vector space V is a subset W of V
such that

(i) λ ∈ R,w ∈W =⇒ λw ∈W
(ii) w1,w2 ∈W =⇒ w1 +w2 ∈W

With this notion of subspace, and the following theorem, we
can now produce many, many examples of general vector
spaces

▶ Thm. Let W be a subspace of a generalized vector space V .
Define operations ∗W : R×W →W and
+W : W ×W →W by

λ ∗W w ≡ λ ∗V w ∀w ∈W

w1 +W w2 ≡ w1 +V w2 ∀w1,w2 ∈W

Then W together with the operations ∗W and +W is a
general vector space.



Definitions and Theorems, Cont’d

▶ Def. A set of vectors {v1, . . . , vk} is linearly independent if
the only solution of

x1v1 + · · ·+ xkvk = 0

is the trivial solution where x1 = 0, x2 = 0, . . . , xk = 0.
▶ Def. A basis for a general vector space V is a set of vectors
{b1, . . . ,bn} ⊂ V such that
▶ Every v ∈ V can be expressed as

v = c1b1 + · · ·+ cnbn

▶ The vectors {b1, · · · ,bn} are linearly independent.

▶ Thm. Every general vector space V has a basis and every
basis for a general vector space V has the same number of
vectors.

▶ Def. The dimension of a general vector space V is the
number of vectors in any basis for V .



Definitions and Theorems, Cont’d

▶ Def. A linear transformation is a function T : V →W
between two vector spaces such that
▶ T (λv) = λv for all λ ∈ R and for all v ∈ V
▶ T (v1 + v2) = T (v1) + T (v2) for all v1, v2 ∈ V

▶ Def. The range of a linear transformation T : V →W is the
set

range (T ) = {w ∈W | w = T (v) for some v ∈ V }

▶ Def. The kernel of a linear transformation T : V →W is the
set

ker (T ) = {v ∈ V | T (v) = 0W }

▶ Def. A vector space isomorphism is an invertible linear
transformation T : V →W between two vector spaces.

▶ Theorem: T : V →W is a vector space isomorphism if and
only if Range(T ) = W and ker (T ) = {0V }



Coordinatization of Generalized Vector Spaces

The idea of bases is absolutely vital for dealing with generalized
vector spaces. They provide us with coordinates by which we can
carry out numerical calculations.

This works essentially the same way we used a basis for a subspace
W of Rn to provide good coordinates for the vectors in W .

Definition
Let v be a vector in a generalized vector space V and let
B = {b1, . . . ,bn} be a basis for V . The coordinate vector for v
with respect to B is the unique element of Rn defined by

vB = [c1, c2, . . . , cn]

where the numbers c1, c2, . . . , cn are determined by the unique
expansion

v = c1b1 + c2b2 + · · ·+ cnbn



Coordinatization of Generalized Vector Spaces, Cont’d

Bases thus allow us to attach to “abstract” vectors v ∈ V concrete
numerical coordinate vectors vB ∈ Rn.

In fact,

Theorem
The correspondence V ∋ v 7→ vB ∈ Rn defines an isomorphism
(i.e., an invertible linear transformation) iB : V → Rn

Corollary

Every finite-dimensional vector space is isomorphic to a particular
Rn.



Calculational Procedure for Generalized Vector Spaces

problem in V iB−−−−→ problem in Rn

↓ numerical calculations

solution in V i−1
B←−−−

solution in Rn

N.B. This procedure first requires a basis for V .



Example: Solving a Differential Equation using Linear
Algebra

Consider

x2
d2f

dx2
− 4x

df

dx
+ 6f = 0

We shall look for solutions of this differential equation inside the
vector space P4 of polynomials of degree ≤ 4.

The first thing we’ll need is a basis for P4. Luckily, there’s a
natural one. Every polynomial of degree ≤ 4 is an expression the
form a4x

4 + a3x
3 + a2x

2 + a1x + a0. In fact,

P4 =
{
a4x

4 + a3x
3 + a2x

2 + a1x + a0 | a4, . . . , a0 ∈ R
}

= span
(
1, x , x2, x3, x4

)



Moreover, it’s pretty obvious that
{
1, x , x2, x3, x4

}
are linearly

independent polynomials since

a4x
4+a3x

3+a2x
2+a1x+a0 = 0 ⇒ a0 = 0 , a1 = 0 , . . . , a4 = 0

So B =
{
1, x , x2, x3, x4

}
is a set of linearly independent vectors

that generate P4 - hence, B is a basis for the vector space P4.

We then have the following coordinatization isomorphism

iB : P4 → R5 : a4x
4+a3x

3+a2x
2+a1x+a0 ←→ [a0, a1, a2, a3, a4]

which will allow us to convert the original problem about
polynomials in P4 to a problem in R5.



Solving x2
d2f

dx2
− 4x

df

dx
+ 6f = 0 , Cont’d

Now consider the differential operator on the left hand side of the
differential equation

L ≡ x2
d2

dx2
− 4x

d

dx
+ 6

We have

L (λf ) = x2
d2

dx2
(λf )− 4x

d

dx
(λf ) + 6 (λf )

= λx2
d2f

dx2
− 4λx

df

dx
+ 6λf

= λL (f )

L (f + g) = x2
d2

dx2
(f + g)− 4x

d

dx
(f + g) + 6 (f + g)

= x2
d2f

dx2
− 4x

df

dx
+ 6f + x2

d2g

dx2
− 4x

dg

dx
+ 6g

= L (f ) + L (g)



Example, Cont’d

Thus, L : P4 → P4 is a linear transformation.

Moreover, solving the original differential equation is equivalent to
finding the kernel of L:

ker (L) =
{
f ∈ P4 | x2

d2f

dx2
− 4x

df

dx
+ 6f = 0

}
So the question now is how to calculate ker (L)?

N.B. We have now reformulated the problem of solving a
differential equation to an equivalent linear algebraic problem in
P4.



Calculating ker (L)

Recall that to find the kernel of a linear transformation
T : R5 → R5, we construct a matrix

AT =

 ↑ · · · ↑
T ([1, 0, 0, 0, 0]) · · · T ([0, 0, 0, 0, 1])

↓ · · · ↓


and then calculate NullSp (AT ) =

{
x ∈ R5 | ATx = 0

}
We’ll now use the coordinate isomorphism iB : P4 → R5 and its
inverse i−1

B : R5 → P4 to convert the problem of finding
ker (L) ⊆ P4 to a problem in R5.



Let’s first look at how L acts on the basis vectors for P4 :

L (1) =

(
x2

d2

dx2
− 4x

d

dx
+ 6

)
(1) = 0 + 0 + 6 = 6

L (x) =

(
x2

d2

dx2
− 4x

d

dx
+ 6

)
(x) = 0− 4x + 6x = 2x

L
(
x2
)

=

(
x2

d2

dx2
− 4x

d

dx
+ 6

)(
x2
)
= 2x2 − 8x2 + 6x2 = 0

L
(
x3
)

=

(
x2

d2

dx2
− 4x

d

dx
+ 6

)(
x3
)
= 6x3 − 12x2 + 6x3 = 0

L
(
x4
)

=

(
x2

d2

dx2
− 4x

d

dx
+ 6

)(
x4
)
= 12x4 − 16x4 + 6x4 = 2x4



We thus have

L (1) = 6(1)

L (x) = 2(x)

L
(
x2
)

= 0

L
(
x3
)

= 0

L
(
x4
)

= 2
(
x4
)



Let’s now employ the coordinatization isomorphism iB : P4 ↔ R5.

a0 + a1x + a2x
2 + a3x

3 + a4x
5 ←→ [a0, a1, a2, a3, a4]

1 L−−−−→ 6 (1)

x L−−−−→ 2 (x)

x2 L−−−−→ 0

x3 L−−−−→ 0

x4 L−−−−→ 2x4



Let’s now employ the coordinatization isomorphism iB : P4 ↔ R5.

a0 + a1x + a2x
2 + a3x

3 + a4x
5 ←→ [a0, a1, a2, a3, a4]

[1, 0, 0, 0, 0] i−1
B−−−−−→

1 L−−−−→ 6 (1) iB−−−−→ [6, 0, 0, 0, 0]

[0, 1, 0, 0, 0] i−1
B−−−−−→

x L−−−−→ 2 (x) iB−−−−→ [0, 2, 0, 0, 0]

[0, 0, 1, 0, 0] i−1
B−−−−−→

x2 L−−−−→ 0 iB−−−−→ [0, 0, 0, 0, 0]

[0, 0, 0, 1, 0] i−1
B−−−−−→

x3 L−−−−→ 0 iB−−−−→ [0, 0, 0, 0, 0]

[0, 0, 0, 0, 1] i−1
B−−−−−→

x4 L−−−−→ 2
(
x4
)

iB−−−−→ [0, 0, 0, 0, 2]

which shows how the linear transformation iB ◦ L ◦ i−1
B : R5 → R5

acts on the standard basis vectors of R5.



If we now define

T : R5 → R5 : x 7−→ iB ◦ L ◦ i−1
B

then

AT =


6 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 2


We can now solve the related problem in R5:

Solving L(p) = 0 in P4 ←→ Finding Ker(T ) = NullSp (AT ) in R5



After row reducing AT , one sees

R.R.E .F . (AT ) =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


Thus, the solutions of ATx = 0 must have

x1 = 0 , x2 = 0 , x5 = 0

and x3 and x4 are left as free parameters.



Thus, a solution vector must be of the form

x =


0
0
x3
x4
0

 = x3


0
0
1
0
0

+ x4


0
0
0
1
0


and the constant vectors on the right hand side will be the basis
vectors for NullSp (AT ).
Hence,

ker (T ) = NullSp (AT ) = span




0
0
1
0
0

 ,


0
0
0
1
0




This is our “answer” in R5.



However, the original problem was posed in P4. To find the
appropriate answer in P4, we need to use i−1

B : R5 → P4 to pull
our answer in R5 back to P4.

ker (L) = i−1
B ker (AT )

= i−1
B

span




0
0
1
0
0

 ,


0
0
0
1
0





= span
(
x2, x3

)
=

{
c1x

2 + c2x
3 | c1, c2 ∈ R

}


