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Lecture 38 : Calculating in a General Vector Space

Agenda:
1. Review: Bases and Coordinatization

2. Example: Solving a Linear ODE using Linear Algebra



Coordinatization of Generalized Vector Spaces

Definition

Let B ={b;,...,b,} be a basis for a general vector space V and
let v € V. Then v has a unique expression as a linear combination
of the vectors in B

v =cib; + by + -+ csb,

The coordinate vector of v with respect to the basis B is the
element
Vg = [C1,C2, .. .,Cn] e R".

Theorem
The map ig : V — R" : v+ vg is an isomorphism of vector

spaces.



Calculational Scheme for Generalized Vector Spaces

roblem in V i roblem in R”
p B p

J numerical calculations

solution in V /El solution in R”

—

But note: This procedure first requires a basis B for V.



Example: Solving a Differential Equation using Linear
Algebra

Consider 2f i
27 - e p—
X 02 de +6f=0

We shall look for solutions of this differential equation inside the
vector space Ps of polynomials of degree < 4.

The first thing we'll need is a basis for P;.
Now, a polynomial of degree < 4 is an expression the form
asx* + a3x3 + axx? + a1 x + ag. In fact,

Py = {a4X4+a3X3+32X2+31X+80’34,...,80€R}

= span (1,x,x2,x3,x4)

So, as a vector space, Py is generated by the monomials

1,x,x2,x3, x4



Moreover, it's pretty obvious that {1,x,x2,x3,x4} are linearly
independent polynomials
For

asx*ta3x3+ax®+aix+ap=0 = a=0,a,=0,...,a,=0

So B = {1,x,x? x3,x*} is a set of linearly independent vectors
that generate P4 - hence, B is a basis for the vector space Pjy.

We then have the following coordinatization isomorphism
. 5 . 4 3 2
ig: Py R agx"+asx’+apx“+aix+ag «— [ao, a1, az, as, as|

which will allow us to convert the original problem about
polynomials in P4 to a problem in R>.



d>f df
Solving Xz@ — 4x& +6f =0, Cont'd

Now consider the differential operator on the left hand side of the
differential equation

d? d

24 L, 9
E_Xdz 4de+6
We have L : Py — Py
2d2 d
L) = d2(>\f) 4xd—(>\f)+6()\f)
df df
_ 2
— )\xdz 4)\xd—+6)\f
= AL(f)
, d? d
L(f+g) = dg(f+g) a(f+g)+6(f+g)
d’f df d’g dg
_ 27_ il 2 s
= Xga T T X e T 0

= L(f)+L(g)



Example, Cont'd
Thus,

L) = AC(f)
L(f+g) = L(f)+L(g)

and so L : P4 — P4 is a linear transformation of the vector space
Py.

Moreover, solving the original differential equation is equivalent to
finding the kernel of L:

d*f df
ker (£) = {f € Pa| xzw —4Xa +6f = 0}

We have now reformulated the problem of solving a differential
equation to an equivalent linear algebraic problem in the vector
space Pq.

So the question now is how to calculate ker (£)?



Calculating the Kernel of a Linear Transformation

Recall that to find the kernel of a linear transformation
T : R> — R®, we construct a matrix

Ar= | T([1,0,0,0,0)) --- T([0,0,0,0,1])

and then calculate NullSp (A7) = {x e R> | Arx =0}

We'll now use the coordinate isomorphism ig : P4 — R> and its
inverse i,;l : R® — P4 to convert the problem of finding
ker (£) C P4 to a problem in RS.



Let's first look at how L acts on the basis vectors for Pj :

2x*



Let's re-express these results in terms of the basis
B= {1,X,x2,x3,x4} of Pa:

We thus have

L£(1) = 6(1)
L(x) = 2(x
L (xz) =
L (X3) 0
L (x4) = 2 (x4)



Let's now employ the coordinatization isomorphism ig : P4 <> R®.

ao + a1x + é)zX2 + ‘93X3 + ‘94X5 — [ao, ai, az, as, a4]

1 A 6(1)
x _L . 2(x)
X L, 0
x3 L) 0

x4 L 2x*



Let's now employ the coordinatization isomorphism ig : P4 <> R5.

ap + aix + 32X2 + a3x3 + :94X5 — [ao7 ai, az, as, 34]

[1,0,0,0,0] A 1 L) 6(1) i_B> [6,0,0,0,0]
x _L,  2(x)
XL 0
x3 _é__> 0
x4 L 2x%



Let's now employ the coordinatization isomorphism ig : P4 <> R5.

ap + aix + 32X2 + a3X3 + a4x5 —> [ao, ai, ap, as, 34]

[1,0,0,0,0]
[0,1,0,0,0]
[0,0,1,0,0]
[0,0,0,1,0]
[0,0,0,0,1]

1 £, 6(1) i [6,00,0,0]
x _ L., 2(x) g [0,2,0,0,0]
X L. 0 i [0,0,0,0,0]
x3 L. 0 is [0,0,0,0,0]
x* L 2 (x*) is [0,0,0,0,2]

which shows how the linear transformation ig o L o igl :R> - RS
acts on the standard basis vectors of R>.



If we now define

T:R> - R%: x+sigoLoigh(x)

then
6 0 0 0O
0 T 02000
AT{T(el) c«- T(es) |=100 000
J i\ 0 00 0O
0 00 0 2

We can now solve the related problem in R>:

Solving L£(f) = 0 in P4 +— Finding Ker(T) € R®

where
Ker (T) = NullSp (A7) C R®



Determining NullSp (A7)

After row reducing AT, one sees

R.R.EF.(A7)=

O O O O
O O O+~ O
O O O O O
O O O O o
O O+~ OO

Thus, the solutions of A7+x = 0 must have

and x3 and x4 are left as free parameters.



Thus, a solution vector must be of the form

0 0 0
0 0 0
x=|x3 | =x3| 1| +x4] 0
X4 0 1
0 0 0

and the constant vectors on the right hand side will be the basis
vectors for NullSp (AT).
Hence,

ker (T) = NullSp (A1) = span

OO+~ OO
o R O OO

This is our “answer in R®" .



However, the original problem was posed in P4. To find the

appropriate “answer in P,;", we need to use /B1 :R® — P4 to pull
our answer in R® back to Py.

ker (L) = ig'ker(AT)

0 0
0 0
= igl span 11,10
0 1
0 0

= span (x*,x°)

= {C1X2 + C2X3 | C1,C € R}



Thus the solution set of the original differential equation

d*f df
= 27— —_ —
L(f)=x e XdX+6f 0

Ker (L) = {c1x2 +ox|a,oec R}



