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Lecture 38 : Calculating in a General Vector Space

Agenda:

1. Review: Bases and Coordinatization

2. Example: Solving a Linear ODE using Linear Algebra



Coordinatization of Generalized Vector Spaces

Definition
Let B = {b1, . . . ,bn} be a basis for a general vector space V and
let v ∈ V . Then v has a unique expression as a linear combination
of the vectors in B

v = c1b1 + c2b2 + · · ·+ cnbn

The coordinate vector of v with respect to the basis B is the
element

vB = [c1, c2, . . . , cn] ∈ Rn.

Theorem
The map iB : V → Rn : v 7→ vB is an isomorphism of vector
spaces.



Calculational Scheme for Generalized Vector Spaces

problem in V iB−−−−→ problem in Rn

↓ numerical calculations

solution in V i−1
B←−−−

solution in Rn

But note: This procedure first requires a basis B for V .



Example: Solving a Differential Equation using Linear
Algebra

Consider

x2
d2f

dx2
− 4x

df

dx
+ 6f = 0

We shall look for solutions of this differential equation inside the
vector space P4 of polynomials of degree ≤ 4.

The first thing we’ll need is a basis for P4.
Now, a polynomial of degree ≤ 4 is an expression the form
a4x

4 + a3x
3 + a2x

2 + a1x + a0. In fact,

P4 =
{
a4x

4 + a3x
3 + a2x

2 + a1x + a0 | a4, . . . , a0 ∈ R
}

= span
(
1, x , x2, x3, x4

)
So, as a vector space, P4 is generated by the monomials
1, x , x2, x3, x4.



Moreover, it’s pretty obvious that
{
1, x , x2, x3, x4

}
are linearly

independent polynomials
For

a4x
4+a3x

3+a2x
2+a1x+a0 = 0 ⇒ a0 = 0 , a1 = 0 , . . . , a4 = 0

So B =
{
1, x , x2, x3, x4

}
is a set of linearly independent vectors

that generate P4 - hence, B is a basis for the vector space P4.

We then have the following coordinatization isomorphism

iB : P4 ↔ R5 : a4x
4+a3x

3+a2x
2+a1x+a0 ←→ [a0, a1, a2, a3, a4]

which will allow us to convert the original problem about
polynomials in P4 to a problem in R5.



Solving x2
d2f

dx2
− 4x

df

dx
+ 6f = 0 , Cont’d

Now consider the differential operator on the left hand side of the
differential equation

L ≡ x2
d2

dx2
− 4x

d

dx
+ 6

We have L : P4 → P4

L (λf ) = x2
d2

dx2
(λf )− 4x

d

dx
(λf ) + 6 (λf )

= λx2
d2f

dx2
− 4λx

df

dx
+ 6λf

= λL (f )

L (f + g) = x2
d2

dx2
(f + g)− 4x

d

dx
(f + g) + 6 (f + g)

= x2
d2f

dx2
− 4x

df

dx
+ 6f + x2

d2g

dx2
− 4x

dg

dx
+ 6g

= L (f ) + L (g)



Example, Cont’d
Thus,

L (λf ) = λL (f )
L (f + g) = L (f ) + L (g)

and so L : P4 → P4 is a linear transformation of the vector space
P4.

Moreover, solving the original differential equation is equivalent to
finding the kernel of L:

ker (L) =
{
f ∈ P4 | x2

d2f

dx2
− 4x

df

dx
+ 6f = 0

}

We have now reformulated the problem of solving a differential
equation to an equivalent linear algebraic problem in the vector
space P4.
So the question now is how to calculate ker (L)?



Calculating the Kernel of a Linear Transformation

Recall that to find the kernel of a linear transformation
T : R5 → R5, we construct a matrix

AT =

 ↑ · · · ↑
T ([1, 0, 0, 0, 0]) · · · T ([0, 0, 0, 0, 1])

↓ · · · ↓


and then calculate NullSp (AT ) =

{
x ∈ R5 | ATx = 0

}
We’ll now use the coordinate isomorphism iB : P4 → R5 and its
inverse i−1

B : R5 → P4 to convert the problem of finding
ker (L) ⊆ P4 to a problem in R5.



Let’s first look at how L acts on the basis vectors for P4 :

L (1) =

(
x2

d2

dx2
− 4x

d

dx
+ 6

)
(1) = 0 + 0 + 6 = 6

L (x) =

(
x2

d2

dx2
− 4x

d

dx
+ 6

)
(x) = 0− 4x + 6x = 2x

L
(
x2
)

=

(
x2

d2

dx2
− 4x

d

dx
+ 6

)(
x2
)
= 2x2 − 8x2 + 6x2 = 0

L
(
x3
)

=

(
x2

d2

dx2
− 4x

d

dx
+ 6

)(
x3
)
= 6x3 − 12x2 + 6x3 = 0

L
(
x4
)

=

(
x2

d2

dx2
− 4x

d

dx
+ 6

)(
x4
)
= 12x4 − 16x4 + 6x4 = 2x4



Let’s re-express these results in terms of the basis
B =

{
1, x , x2, x3, x4

}
of P4:

We thus have

L (1) = 6(1)

L (x) = 2(x)

L
(
x2
)

= 0

L
(
x3
)

= 0

L
(
x4
)

= 2
(
x4
)



Let’s now employ the coordinatization isomorphism iB : P4 ↔ R5.

a0 + a1x + a2x
2 + a3x

3 + a4x
5 ←→ [a0, a1, a2, a3, a4]

1 L−−−−→ 6 (1)

x L−−−−→ 2 (x)

x2 L−−−−→ 0

x3 L−−−−→ 0

x4 L−−−−→ 2x4



Let’s now employ the coordinatization isomorphism iB : P4 ↔ R5.

a0 + a1x + a2x
2 + a3x

3 + a4x
5 ←→ [a0, a1, a2, a3, a4]

[1, 0, 0, 0, 0] i−1
B−−−−−→

1 L−−−−→ 6 (1) iB−−−−→ [6, 0, 0, 0, 0]

x L−−−−→ 2 (x)

x2 L−−−−→ 0

x3 L−−−−→ 0

x4 L−−−−→ 2x4



Let’s now employ the coordinatization isomorphism iB : P4 ↔ R5.

a0 + a1x + a2x
2 + a3x

3 + a4x
5 ←→ [a0, a1, a2, a3, a4]

[1, 0, 0, 0, 0] i−1
B−−−−−→

1 L−−−−→ 6 (1) iB−−−−→ [6, 0, 0, 0, 0]

[0, 1, 0, 0, 0] i−1
B−−−−−→

x L−−−−→ 2 (x) iB−−−−→ [0, 2, 0, 0, 0]

[0, 0, 1, 0, 0] i−1
B−−−−−→

x2 L−−−−→ 0 iB−−−−→ [0, 0, 0, 0, 0]

[0, 0, 0, 1, 0] i−1
B−−−−−→

x3 L−−−−→ 0 iB−−−−→ [0, 0, 0, 0, 0]

[0, 0, 0, 0, 1] i−1
B−−−−−→

x4 L−−−−→ 2
(
x4
)

iB−−−−→ [0, 0, 0, 0, 2]

which shows how the linear transformation iB ◦ L ◦ i−1
B : R5 → R5

acts on the standard basis vectors of R5.



If we now define

T : R5 → R5 : x 7→ iB ◦ L ◦ i−1
B (x)

then

AT =

 ↑ · · · ↑
T (e1) · · · T (e5)
↓ · · · ↓

 =


6 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 2


We can now solve the related problem in R5:

Solving L(f ) = 0 in P4 ←→ Finding Ker(T ) ∈ R5

where
Ker (T ) = NullSp (AT ) ⊂ R5



Determining NullSp (AT )

After row reducing AT , one sees

R.R.E .F . (AT ) =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


Thus, the solutions of ATx = 0 must have

x1 = 0 , x2 = 0 , x5 = 0

and x3 and x4 are left as free parameters.



Thus, a solution vector must be of the form

x =


0
0
x3
x4
0

 = x3


0
0
1
0
0

+ x4


0
0
0
1
0


and the constant vectors on the right hand side will be the basis
vectors for NullSp (AT ).
Hence,

ker (T ) = NullSp (AT ) = span




0
0
1
0
0

 ,


0
0
0
1
0




This is our “answer in R5” .



However, the original problem was posed in P4. To find the
appropriate “answer in P4”, we need to use i−1

B : R5 → P4 to pull
our answer in R5 back to P4.

ker (L) = i−1
B ker (AT )

= i−1
B

span




0
0
1
0
0

 ,


0
0
0
1
0





= span
(
x2, x3

)
=

{
c1x

2 + c2x
3 | c1, c2 ∈ R

}



Thus the solution set of the original differential equation

L (f ) = x2
d2f

dx2
− 4x

df

dx
+ 6f = 0

is
Ker (L) =

{
c1x

2 + c2x
3 | c1, c2 ∈ R

}


