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2. Inner Products for General Vector Spaces

3. Application: Fourier Analysis



Review of Orthonormal Bases

Definition
A set of vectors {w1, . . . ,wk} is an orthonormal basis for a
subspace W of Rn if

(i) W = span (w1, . . . ,wk);

(ii) The vectors {w1, . . . ,wk} are linearly independent;

(iii) wi ·wj = 0 if i ̸= j ; (orthogonality)

(iv) wi ·wi = 1 (the vectors have unit length)

Suppose B = {w1, . . . ,wk} is an orthonormal basis for a subspace
W .
Then by (i), every v ∈ W can be expressed as

v = c1w1 + · · ·+ ckwk (*)

(ii) ensures that the coefficients c1, . . . , ck on the right hand sides
of (*) are unique (and so provide good coordinates for v).



Orthonormal Bases Cont’d

By conditions (iii) and (iv), the values of the coefficients ci are
easily determined
For

wi · v = wi · (c1w1 + · · ·+ ciwi + · · ·+ ckwk)

= c1wi ·w1 + · · ·+ ciwi ·wi + · · ·+ ckwi ·wk

= 0 + · · ·+ 0 + ci (1) + 0 + · · ·+ 0

= ci

and so
ci = wi · v



Today’s Topic

Last week we described an algorithm, the so-called Gram-Schmidt
Process, that constructs an orthonormal basis for a subspace W
from any other basis for W .

Today, we will generalize this apparatus to more general vector
spaces.

The first thing we’ll need is a generalization of the dot product
(which in Rn is used to test for orthogonality).



Inner Products for Vector Spaces
Here is our generalization of the dot product for Rn:

Definition
Let V be a (general) vector space over R. An inner product on V
is a function

⟨·, ·⟩ : V × V → R

with the following properties:

(i) Linearity

⟨λv ,w⟩ = λ ⟨v ,w⟩ = ⟨v , λw⟩ ∀ λ ∈ R
⟨v1 + v2,w⟩ = ⟨v1,w⟩+ ⟨v2,w⟩

(ii) Symmetry
⟨v ,w⟩ = ⟨w , v⟩

(iii) Positive Definiteness

⟨v , v⟩ > 0 if v ̸= 0V



Example 1: The dot product on Rn

This first example shows that inner products in general vector
spaces are a generalization of the usual dot product in Rn.
Let v = [v1, . . . , vn], w = [w1, . . . ,wn] and define

⟨v,w⟩ ≡ v ·w = v1w1 + v2w2 + · · ·+ vnwn

I’ll now show that conditions (i), (ii) and (iii) of the definition of
an inner product are satisfied.

(i) Linearity

⟨λv,w⟩ = (λv) ·w
= [λv1, . . . , λvn] · [w1, . . . ,wn]

= λv1w1 + · · ·+ λvnwn

= λ (v1w1 + · · ·+ vnwn)

= λv ·w
= λ ⟨v,w⟩



Example 1: the dot product on Rn Cont’d

(i) Linearity Cont’d

⟨u+ v,w⟩ = (u+ v) ·w
= [u1 + v1, . . . , un + vn] · [w1, . . . ,wn]

= (u1 + v1)w1 + · · ·+ (un + vn)wn

= (u1w1 + · · ·+ unwn) + (v1w1 + · · ·+ vnwn)

= u ·w + v ·w
= ⟨u,w⟩+ ⟨v,w⟩



Example 1: the dot product on Rn Cont’d

(ii) Symmetry

⟨v,w⟩ = v ·w
= v1w1 + · · ·+ vnwn

= w1v1 + · · ·+ wnvn

= w · v
= ⟨w, v⟩

(iii) Positive-Definiteness

⟨v, v⟩ = v21 + · · ·+ v2n ≥ 0

since ⟨v, v⟩ is a sum of squares. In fact, so long as
v ̸= [0, . . . , 0], we have ⟨v, v⟩ > 0.

Thus, the dot product is an inner product for Rn.



Example 2: An Inner Product on a Vector Space of
Functions

Let V be the vector space of continuous functions on the interval
[0, L] with scalar multiplication and vector addition defined by

(λf ) (x) ≡ λf (x)

(f + g) (x) ≡ f (x) + g (x)

Define ⟨·, ·⟩ : V × V → R by

⟨f , g⟩ ≡
∫ L

0
f (x) g (x) dx ∀f , g ∈ V

Theorem
With the setup above, ⟨·, ·⟩ is an inner product on V .



Proof

We need to verify the three properties of an inner product.

(i) Linearity

⟨λf , g⟩ =

∫ L

0
(λf ) (x) g (x) dx

=

∫ L

0
λf (x) g (x) dx

= λ

∫ L

0
f (x) g (x) dx

= λ ⟨f , g⟩



Example 2: An Inner Product on a Vector Space of
Functions, Cont’d

(i) Linearity, Cont’d

⟨f + g , h⟩ =

∫ L

0
(f + g) (x) h (x) dx

=

∫ L

0
(f (x) + g (x)) h (x) dx

=

∫ L

0
f (x) h (x) dx +

∫ L

0
g (x) h (x) dx

= ⟨f , h⟩+ ⟨g , h⟩



Example 2: An Inner Product on a Vector Space of
Functions, Cont’d

▶ Symmetry

⟨f , g⟩ =

∫ L

0
f (x) g (x) dx

=

∫ L

0
g (x) f (x) dx

= ⟨g , f ⟩



Example 2: An Inner Product on a Vector Space of
Functions, Cont’d

(iii) Positive-Definiteness

f ̸= 0 ⇒? ⟨f , f ⟩ =
∫ L

0
f (x)2 dx > 0

To prove that ⟨f , f ⟩ > 0 for any non-zero function f requires some
technical theorems from Calculus.

However, it’s not that hard to see, informally, why this must be the
case.
One first notes that the integral of a positive function g (x) from 0
to L is just the area under the graph of g (x) between 0 and L.



Inner Product on a Function Space; Positive-Definiteness
Cont’d

So long as f (x)2 is non-zero at some point in [0, L], the continuity
of g (x) will ensure that there will be some non-zero area under the
graph of f (x)2.
And so if f ̸= f0 = 0V

⟨f , f ⟩ =

∫ L

0
f (x)2 dx

=
(
area under the graph of f (x)2 between 0 and L

)
> 0

since non-zero areas are always positive numbers.



Fourier Series and Harmonic Analysis

Next, consider the functions

ϕn (x) ≡
√

2

L
sin
(nπ

L
x
)

, n = 1, 2, 3, . . .

These functions can be thought of as the vibrational modes of
string of length L. We have (by direct computation)

⟨ϕn, ϕm⟩ =
2

L

∫ L

0
sin
(nπ

L
x
)
sin
(mπ

L
x
)
dx =

{
1 if n = m
0 if n ̸= m

Note how this formula is analogous to the formula

ei · ej =
{

1 if i = j
0 if i ̸= j

for the standard basis vectors of Rn.



Fourier Series and Harmonic Analysis, Cont’d

Indeed, the functions {ϕn (x) | n ∈ N} provide an orthonormal
basis for V and every function f ∈ V has a unique expansion

f (x) =
∞∑
n=1

bn

√
2

L
sin
(nπ

L
x
)

(*)

Equation (*) is called the Fourier Sine series for f (x).
It is interpretable as the decomposition of a “vibration” f into its
fundamental vibrational modes (a.k.a. its “harmonics”).

The numbers bn are interpretable as the amplitude of the nth

vibration mode.



Example 2: Fourier Series and Harmonic Analysis, Cont’d

If we multiply both sides of (*) by ϕn(x) =
√

2
L sin

(
nπ
L x
)
and

integrate over the interval [0, L], we find

⟨ϕn, f ⟩ =

√
2

L

∫ L

0
f (x) sin

(nπ
L
x
)
dx

=

∫ L

0

(
2

L

∞∑
n=1

bn sin
(nπ

L
x
)
sin
(mπ

L
x
))

dx

=
2

L

∞∑
m=1

∫ L

0
bm sin

(mπ

L
x
)
sin
(nπ

L
x
)
dx

=
∞∑

m=1

bmδn,m

= bn



Fourier Series and Harmonic Analysis: Summary

Thus, the coefficients bn in the harmonic expansion

f (x) =
∞∑
n=1

bnϕn(x) =
∞∑
n=1

bn

√
2

L
sin
(nπ

L
x
)

of f with respect to the orthonormal basis {ϕ1,ϕ2, . . .} are
effectively determined by taking the inner product of f with the
basis element ϕn (x).

bn = ⟨ϕn, f ⟩ =
√

2

L

∫ L

0
f (x) sin

(nπ
L
x
)
dx


