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Lecture 39: Inner Products for Vector Spaces

Agenda
1. Review of Orthonormal Bases
2. Inner Products for General Vector Spaces

3. Application: Fourier Analysis



Review of Orthonormal Bases

Definition
A set of vectors {wji,...,w} is an orthonormal basis for a
subspace W of R" if

(i) W =span(wy,...,w);

(i) The vectors {wq,...,wy} are linearly independent;
(iii) wj-wj=0if i # j; (orthogonality)
)

(iv) wj-w; =1 (the vectors have unit length)

Suppose B = {wj,...,wg} is an orthonormal basis for a subspace
w.
Then by (i), every v € W can be expressed as

V = CiW71 + - -+ + CkWg (*)

(i) ensures that the coefficients cy, ..., ck on the right hand sides
of (*) are unique (and so provide good coordinates for v).



Orthonormal Bases Cont'd

By conditions (iii) and (iv), the values of the coefficients ¢; are
easily determined

For
Wi v = Wi (CoWy+ -+ GW, - Cw)
= CW; W1+ + GW; Wi+ -+ CW; - Wy
= 0+ - 40+¢(1)+0+---+0
= Ci
and so

Ci =W;- -V



Today's Topic

Last week we described an algorithm, the so-called Gram-Schmidt
Process, that constructs an orthonormal basis for a subspace W
from any other basis for W.

Today, we will generalize this apparatus to more general vector
spaces.

The first thing we'll need is a generalization of the dot product
(which in R" is used to test for orthogonality).



Inner Products for Vector Spaces
Here is our generalization of the dot product for R":
Definition
Let V be a (general) vector space over R. An inner product on V
is a function
(w):VxV-=oR
with the following properties:
(i) Linearity
Av,w) = Av,w) = (v, \w) VAeR
(vi+wva,w) = (vi,w)+ (va,w)

(i) Symmetry
(v,w) = (w,v)

(iii) Positive Definiteness

(viv) >0 if v# 0y



Example 1: The dot product on R”

This first example shows that inner products in general vector
spaces are a generalization of the usual dot product in R".
Let v=|[vi,...,vn], w=[wq,..., w,| and define

(V,W) =Vv-wW=wviwg + vowa + - -+ + Vywp

I'll now show that conditions (i), (ii) and (iii) of the definition of
an inner product are satisfied.

(i) Linearity

Av,w) = (Av)-w
= [Avi,..Avy] - [wa, .o, wy)
= Aviwy + -+ Avpw,
= Xwviwr 4+ vpwy)
= Av-w
= A(v,w)



Example 1: the dot product on R” Cont'd

(i) Linearity Cont'd

(u+v,w)

(u+v) w

[ur 4+ va, .oy Un + Vo] - Wi, ..., W)

(ur +vi)wy + -+ (up+ vi) wy

(uwy + -+ upwi) + (viws + - -+ + VW)
u-w-+v-w

() + (v, w)



Example 1: the dot product on R” Cont'd
(i) Symmetry

(v,w) = v-w
= V1W1+"'+Vnwn
= W1V1+..'+ann
= w-v

= (w,v)
(iii) Positive-Definiteness
(Vov)=vi 4+ V2 >0

since (v, v) is a sum of squares. In fact, so long as
v #[0,...,0], we have (v,v) > 0.

Thus, the dot product is an inner product for R”.



Example 2: An Inner Product on a Vector Space of
Functions

Let V be the vector space of continuous functions on the interval
[0, L] with scalar multiplication and vector addition defined by

(Af)(x) = M (x)
(f+e)(x) = f(x)+gx)

Define (-,-) : V. x V — R by

L
(f,g)z/o f(x)g(x)dx Vf,geV

Theorem

With the setup above, (-,-) is an inner product on V.



Proof

We need to verify the three properties of an inner product.

(i) Linearity
L
ore) = [ 0NEgk)dx
L
= /0 A (x) g (x) dx

L
= )\/0 f(x) g (x)dx
= Af.g)



Example 2: An Inner Product on a Vector Space of
Functions, Cont'd

(i) Linearity, Cont'd
L
(Freh) = [ (Fra)neo
0
L
_ /O(f(x)+g(x))h(x)dx

L L

= / f(x)h(x)dx—l—/ g (x) h(x)dx
0 0

= (fih) + (g h)



Example 2: An Inner Product on a Vector Space of
Functions, Cont'd

> Symmetry

<f7g> =



Example 2: An Inner Product on a Vector Space of
Functions, Cont'd

(iii) Positive-Definiteness
L
f40 =7 (f,f>:/ f(x)?dx >0
0

To prove that (f, f) > 0 for any non-zero function f requires some
technical theorems from Calculus.

However, it's not that hard to see, informally, why this must be the
case.

One first notes that the integral of a positive function g (x) from 0
to L is just the area under the graph of g (x) between 0 and L.



Inner Product on a Function Space; Positive-Definiteness
Cont'd

So long as f (x)? is non-zero at some point in [0, L], the continuity
of g (x) will ensure that there will be some non-zero area under the
graph of f (x)°.

And soif f £ fy, =0y

L
(f f) = /Of(x)zdx

= (area under the graph of f (x)? between 0 and L)
> 0

since non-zero areas are alwavs positive numbers.



Fourier Series and Harmonic Analysis
Next, consider the functions

¢n(X)E\/§sin (”T”x> L n=1,2,3,...

These functions can be thought of as the vibrational modes of
string of length L. We have (by direct computation)

onon = [ in(Fpsn (TR o= {5 1o

Note how this formula is analogous to the formula

(1 ifi=
STV 0 ifi

for the standard basis vectors of R".



Fourier Series and Harmonic Analysis, Cont'd

Indeed, the functions {¢, (x) | n € N} provide an orthonormal
basis for V and every function f € V has a unique expansion

pffe) o

Equation (*) is called the Fourier Sine series for f(x).
It is interpretable as the decomposition of a “vibration” f into its
fundamental vibrational modes (a.k.a. its “harmonics”).

The numbers b, are interpretable as the amplitude of the nt"
vibration mode.



Example 2: Fourier Series and Harmonic Analysis, Cont'd

If we multiply both sides of (*) by ¢,(x) = \/%sin ("£x) and
integrate over the interval [0, L], we find

(on, f) = i/OL f (x)sin (n—ZTx> dx



Fourier Series and Harmonic Analysis: Summary

Thus, the coefficients b, in the harmonic expansion

f(x)_ibnén Zb \/75|n< )

of f with respect to the orthonormal basis {¢1,¢2, ...} are
effectively determined by taking the inner product of f with the
basis element ¢, (x).

bn = (¢n, f) \/>/ sm )dx



