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Lecture 41 : Review for Final Exam, Part III

Final Exam :

▶ Section 62663 (MWF, 10:30pm): Friday, December 10,
10:00am - 11:50am

▶ Section 62667 (MWF, 1:30pm): Wednesday, December 8,
10:00am - 11:50am

See posts on the Math 3013 Canvas homepage for solutions to
exams (both midterm exams and sample exams).



Review for Final - Part III (Material covered since the 2nd
exam)

11. Eigenvectors and Eigenvalues
The Eigenvector/Eigenvalue Problem for an n × n matrix A is
the problem of finding non-zero vectors (eigenvectors) v and
numbers (eigenvalues) λ such that

Av = λv

▶ the eigenvalues of A are the solutions of det (A− λI) = 0

▶ The eigenvectors with eigenvalue λ are solutions of
(A− λI) x = 0

▶ the algebraic multiplicity of an eigenvalue r : the number of
factors of (λ− r) in the characteristic polynomial
pA (λ) ≡ det (A− λI)

▶ geometric multiplicity of an eigenvalue r : the dimension of
the r -eigenspace = dim (NullSp (A− r I))
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12. Diagonalization of Square Matrices
Def. An n × n matrix A is diagonalizable if there exists an
invertible n × n matrix C and a diagonal n × n matrix D such that

C−1AC = D

▶ An n × n matrix A is diagonalizable if and only if it has n
linearly independent eigenvectors v1, . . . , vn, in which case

C =

 ↑ · · · ↑
v1 · · · vn
↓ · · · ↓

 and D =

 λ1 · · · 0
...

. . .
...

0 · · · λn


where λi is the eigenvalue corresponding to the eigenvector vi .

▶ If an n × n matrix A has n distinct eigenvalues then it
diagonalizable.

▶ An n × n matrix A is diagonalizable if and only if the
algebraic multiplicity of each eigenvalue r coincides with its
geometric multiplicity.

▶ If AT = A, then A is diagonalizable.
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13. Orthogonal Decomposition of a Vector w.r.t. a Subspace

▶ Let W be a subspace of Rn, the orthogonal complement of
W is the subspace

W⊥ ≡ {v ∈ Rn | v ·w = 0 for all w ∈W }

▶ Let v ∈ Rn and let W be a subspace of Rn. The orthogonal
decomposition of v w.r.t. W is the unique splitting

v = vW + v⊥

where vW ∈W and v⊥ ∈W⊥.
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▶ If {b1, . . . ,bk} is a basis for W , and

B =

 ← b1 →
...

← bk →


then

W⊥ = NullSp (B)

▶ If {b1, . . . ,bk} is a basis for W and {bk+1, . . . ,bn} is a basis
for W⊥, then {b1, . . . ,bk ,bk+1, . . . ,bn} is a basis for Rn.
If v ∈ Rn, then

v = c1b1 + · · ·+ ckbk + ck+1bk+1 + · · ·+ cnbn

= (c1b1 + · · ·+ ckbk) + (ck+1bk+1 + · · ·+ cnbn)

= vW + v⊥
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To get the coefficients c1, . . . , ck , ck+1, . . . , cn , one calculates the
coordinate vector of v w.r.t. the basis {b1, . . . ,bk ,bk+1, . . . ,bn} ↑ ↑ ↑

b1 · · · bk bk+1 · · · bn v
↓ ↓ ↓


↓ row reduction


1 0 · · · 0 c1

0
. . .

...
...

...
. . . 0

...
0 · · · 0 1 cn


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14. Orthonormal Bases
An orthonormal basis for a subspace W is a basis {b1, . . . ,bk}
such that

bi · bj =
{

1 if i = j
0 if i ̸= j

If {b1, . . . ,bk} is an orthonormal basis for W then not only can
every vector w ∈W be expressed as

w = c1b1 + · · ·+ ckvk

but also the each coefficient ci can be determined by

ci = bi ·w
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15. The Gram-Schmidt Process (for constructing an
orthonormal basis)
Suppose {b1, . . . ,bk} is a basis for a subspace W . Then an
orthogonal basis {o1, . . . , ok} for W can be constructed via the
following algorithm:

o1 = b1

o2 = b2 −
o1 · b2
o1 · o1

o1

...

ok = bk −
o1 · bk
o1 · o1

o1 − · · · −
ok−1 · bk
ok−1 · ok−1

ok−1
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Once an orthogonal basis {o1, . . . , ok} has been constructed, an
orthonormal basis {n1, . . . ,nk} for W can be constructed by
simply rescaling the orthogonal basis vectors so that they have unit
length:

n1 =
o1
∥o1∥

=
o1√
o1 · o1

n2 =
o2
∥o2∥

=
o2√
o2 · o2

...

nk =
ok
∥ok∥

=
ok√
ok · ok


