
Math 3013
WebAssign Problem Set #9

1. For the matrix A =

[
1 3
−2 6

]
compute: (a) the characteristic polynomial of A, (b) the eigenvalues of

A, (c) a basis for each eigenspace of A, and (d) the algebraic and geometric multiplicities of each eigenvalue.

(a) The characteristic polynomial of A is

pA (λ) = det (A− λI) = det

([
1− λ 3
−2 6− λ

])
= (1− λ) (6− λ) + 6

= λ2 − 7λ+ 12

= (λ− 3) (λ− 4)

(b) The eigenvalues of A are the solutions of pA (λ) = 0; thus,

eigenvalues of A are {3, 4}
(c)

3-eigenspace

E3 = NullSp (A− 3I) = NullSp

(
−2 3
−2 3

)
= NullSp

(
1 − 3

2
0 0

)
= span

([
3
2
1

])
= span

([
3
2

])
basis for 3-eigenspace =

{[
3
2

]}
4-eigenspace

E4 = NullSp (A− 4I) = NullSp

(
−3 3
−2 2

)
= NullSp

(
1 −1
0 0

)
= span

([
1
1

])
basis for 4-eigenspace =

{[
1
1

]}
(d) The algebraic multiplicity of an eigenvalue r of A is the number of factors of (λ− r) in the charac-

teristic polynomial pA (λ). Thus,

algebraic multiplicity of eigenvalue 3 = 1

algebraic multiplicity of eigenvalue 4 = 1

The geometric multiplicity of an eigenvalue r of A is the dimension of the corresponding eigenspace
Er - which is, by definition, the number of basis vectors for Er. Thus,

geometric multiplicity of eigenvalue 3 = 1

geometric multiplicity of eigenvalue 4 = 1

2. For the matrix A =

 1 1 0
0 −2 1
0 0 3

 compute: (a) the characteristic polynomial of A, (b) the eigenvalues

of A, (c) a basis for each eigenspace of A, and (d) the algebraic and geometric multiplicities of each
eigenvalue.

(a) We have

pA (λ) = det

 1− λ 1 0
0 −2− λ 1
0 0 3− λ

 = (1− λ) (−2− λ) (3− λ)

1



2

(b)

0 = pA (λ) ⇒ λ = 1,−2, 3 (the eigenvalues of A)

• 1-eigenspace

E1 = NullSp

 1− 1 1 0
0 −2− 1 1
0 0 3− 1

 = NullSp

 0 1 0
0 −3 1
0 0 2


= NullSp

 0 1 0
0 0 1
0 0 0

 = span

 1
0
0


⇒ basis vector =

 1
0
0


(c)

−2-eigenspace

E−2 = NullSp

 3 1 0
0 0 1
0 0 5

 = NullSp

 1 1
3 0

0 0 1
0 0 0


= span

 − 1
3

1
0

 = span

 1
−3
0


⇒ basis vector =

 1
−3
0


3-eigenspace

E3 = NullSp

 −2 1 0
0 −5 1
0 0 0

 = NullSp

 1 0 − 1
10

0 1 − 1
5

0 0 0


= span

 1
10
1
5
1

 = span

 1
2
10


⇒ basis vector =

 1
2
10


(d) The algebraic multiplicity of an eigenvalue r of A is the number of factors of (λ− r) in the charac-

teristic polynomial pA (λ).
The geometric multiplicity of an eigenvalue r of A is the dimension of the corresponding eigenspace

Er - which is, by definition, the number of basis vectors for Er. Thus,

eigenvalue algebraic multiplicity geometric multiplicity
1 1 1
−2 1 1
3 1 1

3. For the matrix A =

 1 2 0
−1 −1 1
0 1 1

 compute: (a) the characteristic polynomial of A, (b) the eigenvalues

of A, (c) a basis for each eigenspace of A, and (d) the algebraic and geometric multiplicities of each
eigenvalue.



3

(a)

pA (λ) = det

 1− λ 2 0
−1 −1− λ 1
0 1 1− λ

 = −λ3 − λ2

= −λ2 (1− λ)

= − (0− λ)
2

(1− λ)

(b) We have two eigenvalues

λ = 0 with algebraic multiplicity 2

λ = 1 with algebraic multiplicity 1
(c)

0-eigenspace

E0 = NullSp

 1 2 0
−1 −1 1
0 1 1

 = NullSp

 1 0 −2
0 1 1
0 0 0


= span

 2
−1
1


⇒ basis =


 2
−1
1


1-eigenspace

E1 = NullSp

 0 2 0
−1 −2 1
0 1 0

 = NullSp

 1 0 −1
0 1 0
0 0 0


= span

 1
0
1


⇒ basis =


 1

0
1


(d) The algebraic multiplicity of an eigenvalue r of A is the number of factors of (λ− r) in the charac-

teristic polynomial pA (λ).
The geometric multiplicity of an eigenvalue r of A is the dimension of the corresponding eigenspace

Er - which is, by definition, the number of basis vectors for Er. Thus,

eigenvalue algebraic multiplicity geometric multiplicity
0 2 1
1 1 1

4. For the matrix A =

 4 0 1
2 3 2
−1 0 2

 compute: (a) the characteristic polynomial of A, (b) the eigenvalues

of A, (c) a basis for each eigenspace of A, and (d) the algebraic and geometric multiplicities of each
eigenvalue.

(a)

pA (λ) = det

 4− λ 0 1
2 3− λ 2
−1 0 2− λ

 = −λ3 + 9λ2 − 27λ+ 27
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(b) To identify the eigenvalues of A we need to completely factorize pA (λ). Note that λ = 3 is a root
of pA (λ) = 0, since

pA (3) = −27 + 81− 81 + 27 = 0

This implies that (λ− 3) divides pA (λ). A polynomial division calculation shows that

−λ3 + 9λ2 − 27λ+ 27

λ− 3
= − (λ− 3)

2

Thus,

pA (λ) = − (λ− 3) (λ− 3)
2

= (λ− 3)
3

We thus have one eigenvalue λ = 3 with algebraic multiplicity 3.
(c)

3-eigenspace

E3 = NullSp

 1 0 1
2 0 2
−1 0 −1

 = NullSp

 1 0 1
0 0 0
0 0 0


= span

 −1
0
1

 ,
 0

1
0


basis for E3 =


 −1

0
1

 ,
 0

1
0


(d) The algebraic multiplicity of an eigenvalue r of A is the number of factors of (λ− r) in the charac-

teristic polynomial pA (λ).
The geometric multiplicity of an eigenvalue r of A is the dimension of the corresponding eigenspace

Er - which is, by definition, the number of basis vectors for Er. Thus,

eigenvalue algebraic multiplicity geometric multiplicity
3 3 2

5. Below is the diagonalization of a matrix A given in the form P−1AP = D. List the eigenvalues of A
and bases for the corresponding eigenspace.[

2 −1
−1 1

] [
5 −1
2 2

] [
1 1
1 2

]
=

[
4 0
0 3

]
• The eigenvalues of A are the diagonal entries of the matrix D. Thus,

eigenvalues of A = {4, 3}
The basis vectors vλ=4, vλ=3 for the corresponding eigenspaces of A are the corresponding column
vectors of P, thus

vλ=4 =

[
1
1

]
, vλ=3 =

[
1
2

]

6. Determine whether A =

[
5 2
2 5

]
is diagonalizable, and if so, an invertible matrix P and a diagonal

matrix D such that P−1AP = D.

• We have

pA (λ) = det

([
5− λ 2

2 5− λ

])
= (5− λ)

2 − 4 = λ2 − 10λ+ 21

= (λ− 3) (λ− 7)

So the eigenvalues of A are λ = 3, 7.
Since A is a 2× 2 matrix with 2 distinct eigenvalues, A must be diagonalizable.



5

3-eigenspace

E3 = NullSp

(
2 2
2 2

)
= span

([
−1
1

])
⇒ vλ=3 =

[
−1
1

]
7-eigenspace

E4 = NullSp

(
−2 2
2 −2

)
= NullSp

(
1 −1
0 0

)
⇒ vλ=7 =

[
1
1

]
Thus,

P =

[
−1 1
1 1

]
, D =

[
3 0
0 7

]

7. Determine whether A =

[
−3 4
−1 1

]
is diagonalizable, and if so, an invertible matrix P and a diagonal

matrix D such that P−1AP = D.

• We have

pA (λ) = det

([
−3− λ 4
−1 1− λ

])
= (−3− λ) (1− λ) + 4

= λ2 + 2λ+ 1

= (λ+ 1)
2

We thus have only one eigenvalue λ = −1 (occurring with algebraic multiplicity 2)
For A to be diagonalizable, we need two linearly independent eigenvectors.

E−1 = NullSp (A− (−1) I) = NullSp

([
−2 4
−1 2

])
= NullSp

([
1 −2
0 0

])
Since we have only one column without a pivot, we see that E−1 must be 1-dimensional. Thus, A
has only one linearly independent eigenvector, and so A is not diagonalizable.

8. Determine whether A =

 1 0 1
0 1 1
1 1 0

 is diagonalizable, and if so, an invertible matrix P and a diagonal

matrix D such that P−1AP = D.

• We have

pA (λ) = det

 1− λ 0 1
0 1− λ 1
1 1 0− λ

 = −λ3 + 2λ2 + λ− 2

To completely factorize pA (λ), we first note that λ = 2 is a solution: for

pA (2) = −8 + 8 + 2− 2 = 0

This means (λ− 2) is a factor of pA (λ), and a polynomial division calculation shows

−λ3 + 2λ2 + λ− 2

λ− 2
= 1− λ2

Thus,

pA (λ) = (λ− 2)
(
1− λ2

)
= (λ− 2) (1− λ) (1 + λ)

Hence, we have three distinct eigenvalues, λ = 2, 1,−1. As a 3×3 matrix with 3 distinct eigenvalues,
A must be diagonalizable. We’ll now find a basis vector for each eigenspace:
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E2 = NullSp

 −1 0 1
0 −1 1
1 1 −2

 = NullSp

 1 0 −1
0 1 −1
0 0 0


= span

 1
1
1


⇒ vλ=2 =

 1
1
1



E1 = NullSp

 0 0 1
0 0 1
1 1 −1

 = NullSp

 1 1 0
0 0 1
0 0 0


= span

 −1
1
0


⇒ vλ=1 =

 −1
1
0



E−1 = NullSp

 2 0 1
0 2 1
1 1 1

 = NullSp

 1 0 1
2

0 1 1
2

0 0 0


= span

 − 1
2
− 1

2
1

 = span

 1
1
−2


⇒ vλ=−1 =

 1
1
−2


We thus can take

D =

 2 0 0
0 1 0
0 0 −1


P =

 ↑ ↑ ↑
vλ=2 vλ=1 vλ=−1

↓ ↓ ↓

 =

 1 −1 1
1 1 1
1 0 −2




