

Homework Set 3
(Problems from Chapter 2)

Problems from §2.1

2.1.1. Prove that $a \equiv b \pmod{n}$ if and only if a and b leave the same remainder when divided by n .

2.1.2. If $a \in \mathbb{Z}$, prove that a^2 is not congruent to 2 modulo 4 or to 3 modulo 4.

2.1.3. If a, b are integers such that $a \equiv b \pmod{p}$ for every positive prime p , prove that $a = b$.

2.1.4. Which of the following congruences have solutions:

- (a) $x^2 \equiv 1 \pmod{3}$
- (b) $x^2 \equiv 2 \pmod{7}$
- (c) $x^2 \equiv 3 \pmod{11}$

2.1.5. If $[a] = [b]$ in \mathbb{Z}_n , prove that $\text{GCD}(a, n) = \text{GCD}(b, n)$.

2.1.6. If $\text{GCD}(a, n) = 1$, prove that there is an integer b such that $ab \equiv 1 \pmod{n}$.

2.1.7. Prove that if $p \geq 5$ and p is prime, then either $[p]_6 = [1]_6$ or $[p]_6 = [5]_6$.

Problems from §2.2

2.2.1. Write out the addition and multiplication tables for \mathbb{Z}_4 .

2.2.2. Prove or disprove: If $ab = 0$ in \mathbb{Z}_n , then $a = 0$ or $b = 0$.

2.2.3. Prove that if p is prime then the only solutions of $x^2 + x = 0$ in \mathbb{Z}_p are 0 and $p - 1$.

2.2.4. Find all a in \mathbb{Z}_5 for which the equation $ax = 1$ has a solution.

2.2.5. Prove that there is no ordering \prec of \mathbb{Z}_n such that

- (i) if $a \prec b$, and $b \prec c$, then $a \prec c$;
- (ii) if $a \prec b$, then $a + c \prec b + c$ for every $c \in \mathbb{Z}_n$.

Problems from §2.3

2.3.1 If n is composite, prove that there exists $a, b \in \mathbb{Z}_n$ such that $a \neq [0]$ and $b \neq [0]$ but $ab = [0]$.

2.3.2 Let p be prime and assume that $a \neq 0$ in \mathbb{Z}_p . Prove that for any $b \in \mathbb{Z}_p$, the equation $ax = b$ has a solution.

2.3.3. Let $a \neq [0]$ in \mathbb{Z}_n . Prove that $ax = [0]$ has a nonzero solution in \mathbb{Z}_n if and only if $ax = [1]$ has no solution.

2.3.4. Solve the following equations.

- (a) $12x = 2$ in \mathbb{Z}_{19} .
- (b) $7x = 2$ in \mathbb{Z}_{24} .
- (c) $31x = 1$ in \mathbb{Z}_{50} .
- (d) $34x = 1$ in \mathbb{Z}_{97} .