

MATH 3613
Homework Problems from Chapter 3

§3.1

3.1.1. The following subsets of \mathbb{Z} (with ordinary addition and multiplication) satisfy all but one of the axioms for a ring. In each case, which axiom fails.

(a) The set S of odd integers.

- Consider closure under addition or existence of additive identity.

(b) The set of nonnegative integers.

- Consider existence of additive identity.

3.1.2.

(a) Show that the set R of all multiples of 3 is a subring of \mathbb{Z} .

- Check that R is closed under addition, multiplication, and taking additive inverses.

(b) Let k be a fixed integer. Show that the set of all multiples of k is a subring of \mathbb{Z} .

3.1.3. Let $R = \{0, e, b, c\}$ with addition and multiplication defined by the tables below:

$+$	0	e	b	c	\cdot	0	e	b	c
0	0	e	b	c	0	0	0	0	0
e	e	0	c	b	e	0	e	b	c
b	b	c	0	e	b	0	b	e	c
c	c	b	e	0	c	0	c	c	0

Assume distributivity and associativity and show that R is a ring with identity. Is R commutative?

3.1.4. Let $F = \{0, e, a, b\}$ with addition and multiplication defined by the tables below:

$+$	0	e	a	b	\cdot	0	e	a	b
0	0	e	a	b	0	0	0	0	0
e	e	0	b	a	e	0	e	a	b
a	a	b	0	e	a	0	a	b	e
b	b	a	e	0	b	0	b	e	a

Assume distributivity and associativity and show that R is a field.

3.1.5. Which of the following five sets are subrings of $M(\mathbb{R})$. Which ones have an identity?

(a)
$$A = \left\{ \begin{pmatrix} 0 & r \\ 0 & 0 \end{pmatrix} \mid r \in \mathbb{Q} \right\}$$

- subring w/o identity

(b)
$$B = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}$$

- subring with identity

(c)
$$C = \left\{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

- subring w/o identity

$$(d) \quad D = \left\{ \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \mid a \in \mathbb{R} \right\}$$

- subring with identity

$$(e) \quad D = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \mid a \in \mathbb{R} \right\}$$

- subring with identity.

3.1.6. Let R and S be rings. Show that the subset $\bar{R} = \{(r, 0_S) \mid r \in R\}$ is a subring of $R \times S$. Do the same for the set $\bar{S} = \{(0_R, s) \mid s \in S\}$.

3.1.7 If R is a ring, show that $R^* = \{(r, r) \mid r \in R\}$ is a subring of $R \times R$.

3.1.8. Is $\{1, -1, i, -i\}$ a subring of \mathbb{C} ?

- Consider closure under addition

3.1.9. Let p be a positive prime and let R be the set of all rational numbers that can be written in the form $\frac{r}{p^i}$ with $r, i \in \mathbb{Z}$. Show that R is a subring of \mathbb{Q} .

3.1.10. Let T be the ring of continuous functions from \mathbb{R} to \mathbb{R} and let f, g be given by

$$f(x) = \begin{cases} 0 & \text{if } x \leq 2 \\ x-2 & \text{if } 2 < x \end{cases}, \quad g(x) = \begin{cases} 2-x & \text{if } x \leq 2 \\ 0 & \text{if } 2 < x \end{cases}.$$

Show that $f, g \in T$ and that $fg = 0_T$, and therefore that T is not an integral domain.

3.1.11. Let

$$\mathbb{Q}(\sqrt{2}) = \left\{ r + s\sqrt{2} \mid r, s \in \mathbb{Q} \right\}.$$

Show that $\mathbb{Q}(\sqrt{2})$ is a subfield of \mathbb{R} .

3.1.12. Let \mathbb{H} be the set of real quaternions and $1, \mathbf{i}, \mathbf{j}$, and \mathbf{k} the matrices

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

- (a) Prove that

$$\begin{aligned} \mathbf{i}^2 &= \mathbf{j}^2 = \mathbf{k}^2 = -1 \\ \mathbf{j}\mathbf{k} &= -\mathbf{k}\mathbf{j} = \mathbf{i} \\ \mathbf{i}\mathbf{j} &= -\mathbf{j}\mathbf{i} = \mathbf{k} \\ \mathbf{k}\mathbf{i} &= -\mathbf{i}\mathbf{k} = \mathbf{j} \end{aligned}$$

- direct computation

- (b) Show that \mathbb{H} is a noncommutative ring with identity.

- Show that \mathbb{H} is a subring of $M_{2,2}(\mathbb{C})$ (the set of 2×2 matrices with entries in \mathbb{C})

- (c) Show that \mathbb{H} is a division ring.

- Show that if $\mathbf{0} \neq h \in \mathbb{H}$, then $h^{-1} \in \mathbb{H}$.

- (d) Show that the equation $x^2 = -1$ has infinitely many solutions in \mathbb{H} .

•

$$x^2 = \begin{pmatrix} a^2 - b^2 - c^2 - d^2 - 2iab & 2ac + 2iad \\ -2ac + 2iad & a^2 - b^2 - c^2 - d^2 + 2iab \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \implies \begin{cases} a^2 - b^2 - c^2 - d^2 = -1 \\ 2ab = 0 \\ 2ac = 0 \\ 2ad = 0 \end{cases}$$

Notice that if $a = 0$, then the only condition on b, c, d

$$b^2 + c^2 + d^2 = 1$$

which clearly has an infinite number of solution (e.g., take $b = \sin \theta, c = \cos \theta, d = 0, \theta \in [0, 2\pi]$).

3.1.13. Prove Theorem 3.1: If R and S are rings, then the Cartesian product $R \times S$ can be given the structure of a ring by setting

$$\begin{aligned} (r, s) + (r', s') &= (r + r', s + s') \\ (r, s)(r', s') &= (rr', ss') \\ 0_{R \times S} &= (0_R, 0_S) \end{aligned}$$

Also, if R and S are both commutative, then so is $R \times S$; and if R and S each have an identity, then so does $R \times S$.

3.1.14. Prove or disprove: If R and S are integral domains, then $R \times S$ is an integral domain.

3.1.15. Prove or disprove: If R and S are fields, then $R \times S$ is a field.

§3.2

3.2.1. If R is a ring and $a, b \in R$ then

- (a) $(a + b)(a - b) = ?$
- (b) $(a + b)^3 = ?$
- (c) What are the answers to (a) and (b) if R is commutative?

3.2.2. An element e of a ring R is said to be **idempotent** if $e^2 = e$.

- (a) Find four idempotent elements of the ring $M_2(\mathbb{R})$.
- (b) Find all idempotents in \mathbb{Z}_{12} .

$$[0]_{12}, [1]_{12}, [4]_{12}, [9]_{12}$$

3.2.3. Prove that the only idempotents in an integral domain R are 0_R and 1_R .

$$e^2 = e \implies e(e - 1_R) = 0_R \implies e = 0_R \text{ or } e = 1_R \text{ since } R \text{ is an I.D.}$$

3.2.4. Prove or disprove: The set of units in a ring R with an identity is a subring of R .

false: consider closure under addition

3.2.5. (a) If a and b are units in a ring R with identity, prove that ab is a unit and $(ab)^{-1} = b^{-1}a^{-1}$.

(b) Give an example to show that if a and b are units, then $(ab)^{-1}$ may not be the same as $a^{-1}b^{-1}$. (Hint: consider the matrices \mathbf{i} and \mathbf{k} in the quaternion ring \mathbb{H} .)

3.2.6. Prove that a unit in a commutative ring cannot be a zero divisor.

If $aa^{-1} = 1 = a^{-1}a$ and $\exists b \neq 0_R$ such that $ab = 0_R$, then

$$1 = aa^{-1} \implies b \cdot 1 = b(aa^{-1}) \implies b = (ba)a^{-1} = (ab)a^{-1} = 0_R a^{-1} = 0 \text{ (contradiction)}$$

3.2.7.

- (a) If ab is a zero divisor in a commutative ring R , prove that a or b is a zero divisor.

(b) If a or b is a zero divisor in a commutative ring R and $ab \neq 0_R$, prove that ab is a zero divisor.

$$\begin{aligned} a \text{ is a zero divisor} &\implies \exists c \neq 0_R \text{ s.t. } ac = 0_R \implies c(ab) = (ca)b = 0_Rb = 0_R \\ &\implies ab \text{ is a zero divisor} \end{aligned}$$

3.2.8. Let S be a non-empty subset of a ring R . Prove that S is a subring if and only if for all $a, b \in S$, both $a - b$ and ab are in S .

• Demonstrate that these two conditions are sufficient to guarantee the three conditions

- (i) $a, b \in S \implies a + b \in S$,
- (ii) $a, b \in S \implies ab \in S$
- (iii) $a \in S \implies -a \in S$

for S to be a subring of R .

3.2.9. Let R be a ring with identity. If there is a smallest integer n such that $n1_R = 0_R$, then n is said to have *characteristic* n . If no such n exists, R is said to have *characteristic zero*. Show that \mathbb{Z} has characteristic zero, and that \mathbb{Z}_n has characteristic n . What is the characteristic of $\mathbb{Z}_4 \times \mathbb{Z}_6$?

• Look for the smallest integer such that $[n]_4 = [0]_4$ and $[n]_6 = [0]_6$

§3.3

3.3.1. Let R be a ring and let R^* be the subring of $R \times R$ consisting of all elements of the form (a, a) , $a \in R$. Show that the function $f : R \rightarrow R^*$ given by $f(a) = (a, a)$ is an isomorphism.

• Show that f is a ring homomorphism ($f(a + b) = f(a) + f(b)$ and $f(ab) = f(a)f(b)$) and that it is both injective and surjective.

3.3.2. If $f : \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism, prove that f is the identity map.

• If f is a ring isomorphism then $f(0) = 0$ and $f(1) = 1$ (because we need $f(n) = f(0 + n) = f(0) + f(n)$, and $f(n) = f(1 \cdot n) = f(1)f(n)$). But then $f(n) = f(1 + 1 + 1 + \dots + 1) = f(1) + f(1) + \dots + f(1) = 1 + 1 + \dots + 1 = n$

3.3.3. Show that the map $f : \mathbb{Z} \rightarrow \mathbb{Z}_n$ given by $f(a) = [a]$ is a surjective homomorphism but not an isomorphism.

3.3.4. If R and S are rings and $f : R \rightarrow S$ is a ring homomorphism, prove that

$$f(R) = \{s \in S \mid s = f(a) \text{ for some } a \in R\}$$

is a subring of S

3.3.5.

(a) If $f : R \rightarrow S$ and $g : S \rightarrow T$ are ring homomorphisms, show that $g \circ f : R \rightarrow T$ is a ring homomorphism.

(b) If $f : R \rightarrow S$ and $g : S \rightarrow T$ are ring isomorphisms, show that $g \circ f : R \rightarrow T$ is also a ring isomorphism.

3.3.6. If $f : R \rightarrow S$ is an isomorphism of rings, which of the following properties are preserved by this isomorphism? Why?

- (a) $a \in R$ is a zero divisor.
- (b) R is an integral domain.
- (c) R is a subring of \mathbb{Z} .
- (d) $a \in R$ is a solution of $x^2 = x$.

(e) R is a ring of matrices.

3.3.7. Use the properties that are preserved by ring isomorphism to show that the first ring is not isomorphic to the second.

(a) E (the set of even integers) and \mathbb{Z} .

(consider multiplicative identity)

(b) $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ and $M_2(\mathbb{R})$.

(commutativity of multiplication)

(c) $\mathbb{Z}_4 \times \mathbb{Z}_{14}$ and \mathbb{Z}_{16} .

$$|\mathbb{Z}_4 \times \mathbb{Z}_{14}| = 56 \neq 16 = |\mathbb{Z}_{16}|$$

(d) \mathbb{Q} and \mathbb{R} .

$$f(2) = f(1) + f(1) = 2$$

$$f(2) = f(\sqrt{2}) f(\sqrt{2}) \neq q^2 \text{ for any } q \in \mathbb{Q}$$

(e) $\mathbb{Z} \times \mathbb{Z}_2$ and \mathbb{Z} .

$\mathbb{Z} \times \mathbb{Z}_2$ has zero divisors (e.g., $(0, [1]_2) * (1, [0]_2) = (0, [0]_2)$)

(f) $\mathbb{Z}_4 \times \mathbb{Z}_4$ and \mathbb{Z}_{16} .

$$\begin{aligned} f(4([1]_4, [1]_4)) &= f([4]_4, [4]_4) = f(([0]_4, [0]_4)) = [0]_{16} \\ &\neq 4f([1]_4, [1]_4) = 4 \cdot [1]_{16} \end{aligned}$$