
MATH 3613
Homework Problems from Chapter 3

§3.1

3.1.1. The following subsets of Z (with ordinary addition and multiplication) satisfy all but one of the
axioms for a ring. In each case, which axiom fails.
(a) The set S of odd integers.

• Consider closure under addition or existence of additive identity.
(b) The set of nonnegative integers.

• Consider existence of additive identity.

3.1.2.
(a) Show that the set R of all multiples of 3 is a subring of Z.

• Check that R is closed under addition, multiplication, and taking additive inverses.
(b) Let k be a fixed integer. Show that the set of all multiples of k is a subring of Z.

3.1.3. Let R = {0, e, b, c} with addition and multiplication defined by the tables below:

+ 0 e b c · 0 e b c
0 0 e b c 0 0 0 0 0
e e 0 c b e 0 e b c
b b c 0 e b 0 b e c
c c b e 0 c 0 c c 0

Assume distributivity and associativity and show that R is a ring with identity. Is R commutative?

3.1.4. Let F = {0, e, a, b} with addition and multiplication defined by the tables below:

+ 0 e a b · 0 e a b
0 0 e a b 0 0 0 0 0
e e 0 b a e 0 e a b
a a b 0 e a 0 a b e
b b a e 0 b 0 b e a

Assume distributivity and associativity and show that R is a field.

3.1.5. Which of the following five sets are subrings of M(R). Which ones have an identity?

(a) A =
{(

0 r
0 0

)
| r ∈ Q

}
• subring w/o identity

(b) B =
{(

a b
0 c

)
| a, b, c ∈ Z

}
• subring with identity

(c) C =
{(

a a
b b

)
| a, b ∈ R

}
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• subring w/o identity

(d) D =
{(

a 0
a 0

)
| a ∈ R

}
• subring with identity

(e) D =
{(

a 0
0 a

)
| a ∈ R

}
• subring with identity.

3.1.6. Let R and S be rings. Show that the subset R̄ = {(r, 0S) | r ∈ R} is a subring of R×S. Do the same
for the set S̄ = {(0R, s) | s ∈ S}.

3.1.7 If R is a ring, show that R∗ = {(r, r) | r ∈ R} is a subring of R×R.

3.1.8. Is {1,−1, i,−i} a subring of C?

• Consider closure under addition

3.1.9. Let p be a positive prime and let R be the set of all rational numbers that can be written in the form
r
pi with r, i ∈ Z. Show that R is a subring of Q.

3.1.10. Let T be the ring of continuous functions from R to R and let f, g be given by

f(x) =
{

0 if x ≤ 2
x− 2 if 2 < x

, g(x) =
{

2− x if x ≤ 2
0 if 2 < x

.

Show that f, g ∈ T and that fg = 0T , and therefore that T is not an integral domain.

3.1.11. Let

Q(
√

2) =
{
r + s

√
2 | r, s ∈ Q

}
.

Show that Q(
√

2) is a subfield of R.

3.1.12. Let H be the set of real quaterions and 1, i, j, and k the matrices

1 =
(

1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

(a) Prove that

i2 = j2 = k2 = −1
jk = −kj = i

ij = −ji = k

ki = −ik = j

• direct computation
(b) Show that H is a noncommutative ring with identity.

• Show that H is a subring of M2,2 (C) (the set of 2× 2 matrices with entries in C)
(c) Show that H is a division ring.

• Show that if 0 6= h ∈ H, then h−1 ∈ H.
(d) Show that the equation x2 = −1 has infinitely many solutions in H.
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•

x2 =
(
a2 − b2 − c2 − d2 − 2iab 2ac+ 2iad

−2ac+ 2iad a2 − b2 − c2 − d2 + 2iab

)
=
(
−1 0
0 −1

)
=⇒


a2 − b2 − c2 − d2 = −1

2ab = 0
2ac = 0
2ad = 0

Notice that if a = 0, then the only condition on b, c, d

b2 + c2 + d2 = 1

which clearly has an infinite number of solution (e.g., take b = sin θ, c = cos θ, d = 0, θ ∈ [0, 2π]).

3.1.13. Prove Theorem 3.1: If R and S are rings, then the Cartesian product R × S can be given the
structure of a ring by setting

(r, s) + (r′, s′) = (r + r′, s+ s′)

(r, s)(r′, s′) = (rr′, ss′)

0R×S = (0R, 0S) .

Also, if R and S are both commutative, then so is R × S; and if R and S each have an identity, then so
does R× S.

3.1.14. Prove or disprove: If R and S are integral domains, then R× S is an integral domain.

3.1.15. Prove or disprove: If R and S are fields, then R× S is a field.

§3.2

3.2.1. If R is a ring and a, b ∈ R then
(a) (a+ b)(a− b) =?
(b) (a+ b)3 =?
(c) What are the answers to (a) and (b) if R is commutative?

3.2.2. An element e of a ring R is said to be idempotent if e2 = e.
(a) Find four idempotent elements of the ring M2(R).
(b) Find all idempotents in Z12.

[0]12 , [1]12 , [4]12 , [9]12

3.2.3. Prove that the only idempotents in an integral domain R are 0R and 1R.

e2 = e =⇒ e (e− 1R) = 0R =⇒ e = 0R or e = 1R since R is an I.D.

3.2.4. Prove or disprove: The set of units in a ring R with an identity is a subring of R.

false: consider closure under addition

3.2.5. (a) If a and b are units in a ring R with identity, prove tha ab is a unit and (ab)−1 = b−1a−1.
(b)Give an example to show that if a and b are units, then (ab)−1 may not be the same as a−1b−1. (Hint:
consider the matrices i and k in the quaterion ring H.)

3.2.6. Prove that a unit in a commutative ring cannot be a zero divisor.

If aa−1 = 1 = a−1a and ∃ b 6= 0R such that ab = 0R, then

1 = aa−1 =⇒ b · 1 = b
(
aa−1

)
=⇒ b = (ba) a−1 = (ab) a−1 = 0Ra

−1 = 0 (contradiction)

3.2.7.
(a) If ab is a zero divisor in a commutative ring R, prove that a or b is a zero divisor.
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(b) If a or b is a zero divisor in a commutative ring R and ab 6= 0R, prove that ab is a zero divisor.

a is a zero divisor =⇒ ∃ c 6= 0R s.t. ac = 0R =⇒ c (ab) = (ca) b = 0Rb = 0R

=⇒ ab is a zero divisor

3.2.8. Let S be a non-empty subset of a ring R. Prove that S is a subring if and only if for all a, b ∈ S,
both a− b and ab are in S.

• Demonstrate that these two conditions are sufficient to guarantee the three conditions
(i) a, b ∈ S =⇒ a+ b ∈ S,
(ii) a, b ∈ S =⇒ ab ∈ S
(iii) a ∈ S =⇒ −a ∈ S

for S to be a subring of R.

3.2.9. Let R be a ring with identity. If there is a smallest integer n such that n1R = 0R, then n is said to have
characteristic n. If no such n exists, R is said to have characteristic zero. Show that Z has characteristic
zero, and that Zn has characteristic n. What is the characteristic of Z4 × Z6?

• Look for the smallest integer such that [n]4 = [0]4 and [n]6 = [0]6

§3.3

3.3.1. Let R be a ring and let R∗ be the subring of R × R consisting of all elements of the form (a, a),
a ∈ R. Show that the function f : R→ R∗ given by f(a) = (a, a) is an isomorphism.

• Show that f is a ring homomorphism (f (a+ b) = f (a)+f (b) and f (ab) = f (a) f (b)) and that it is both
injective and surjective.

3.3.2. If f : Z→ Z is an isomorphism, prove that f is the identity map.

• If f is a ring isomorphism then f (0) = 0 and f (1) = 1 (because we need f (n) = f (0 + n) = f (0)+f (n),
and f (n) = f (1 · n) = f (1) f (n)). But then f (n) = f (1 + 1 + 1 + · · ·+ 1) = f (1) + f (1) + · · ·+ f (1) =
1 + 1 + · · ·+ 1 = n

3.3.3. Show that the map f : Z → Zn given by f(a) = [a] is a surjective homomorphism but not an
isomorphism.

3.3.4. If R and S are rings and f : R→ S is a ring homomorphism, prove that

f(R) = {s ∈ S | s = f(a) for some a ∈ R}

is a subring of S

3.3.5.

(a) If f : R→ S and g : S → T are ring homomorphisms, show that g ◦ f : R→ T is a ring homomorphism.

(b) If f : R→ S and g : S → T are ring isomorphisms, show that g ◦ f : R→ T is also a ring isomorphism.

3.3.6. If f : R → S is an isomorphism of rings, which of the following properties are preserved by this
isomorphism? Why?
(a) a ∈ R is a zero divisor.
(b) R is an integral domain.
(c) R is a subring of Z.
(d) a ∈ R is a solution of x2 = x.
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(e) R is a ring of matrices.

3.3.7. Use the properties that are preserved by ring isomorphism to show that the first ring is not isomorphic
to the second.
(a) E (the set of even integers) and Z.

(consider multiplicative identity)
(b) R× R× R× R and M2(R).

(commutativity of multiplication)
(c) Z4 × Z14 and Z16.

|Z4 × Z14| = 56 6= 16 = |Z16|
(d) Q and R.

f (2) = f (1) + f (1) = 2

f (2) = f
(√

2
)
f
(√

2
)
6= q2 for any q ∈ Q

(e) Z× Z2 and Z.
Z× Z2 has zero divisors (e.g., (0, [1]2) ∗ (1, [0]2) = (0, [0]2) )

(f) Z4 × Z4 and Z16.

f (4 ([1]4 , [1]4)) = f ([4]4 , [4]4) = f (([0]4 , [0]4)) = [0]16
6= 4f ([1]4 , [1]4) = 4 · [1]16


