

LECTURE 6

Functions

Recall that a *function* (or *map*, or *mapping*) f from a set A to a set B is rule that assigns to each element $a \in A$ exactly one element $b \in B$; b is called the *image* of a by f , or the *value* of f at a , and is usually denoted $f(a)$. The set A is called the *domain* of f and the set B is called the *range* of f .

We will frequently use the notation

$$f : A \rightarrow B$$

to indicate a function whose domain is the set A and whose range is the set B .

1. Composition of Functions

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two functions such that the range of f coincides with the domain of g . Then the **composite** of f and g is the function $g \circ f : A \rightarrow C$ whose rule is

$$g \circ f(x) = g(f(x)) \quad , \quad \forall x \in A \quad .$$

EXAMPLE 6.1. Let \mathbb{E} denote the set of even integers; \mathbb{Z} , the set of integers; and \mathbb{N} the set of natural numbers. Let $f : \mathbb{E} \rightarrow \mathbb{Z}$ be the map defined by

$$f(e) = \frac{e}{2} \quad , \quad \forall e \in \mathbb{E}.$$

Let $g : \mathbb{Z} \rightarrow \mathbb{N}$ be the map defined by

$$g(z) = z^2 \quad , \quad \forall z \in \mathbb{Z} \quad .$$

Then the composite mapping $g \circ f : \mathbb{E} \rightarrow \mathbb{N}$ has the rule

$$e \mapsto (g \circ f)(e) = \left(\frac{e}{2}\right)^2 = \frac{e^2}{4} \quad .$$

Note that the composite function with the opposite order $f \circ g$ is *not defined*, since the domain \mathbb{E} of f is not contained in the range \mathbb{N} of g .

EXAMPLE 6.2. Let

$$\begin{aligned} f : \mathbb{Z} &\rightarrow \mathbb{Z} & ; \quad f(n) &= n - 1 \\ g : \mathbb{Z} &\rightarrow \mathbb{Z} & ; \quad g(n) &= n^2 \end{aligned}$$

Then

$$\begin{aligned} (f \circ g)(n) &= f(g(n)) \\ &= f(n^2) \\ &= n^2 + 1 \quad , \end{aligned}$$

while

$$\begin{aligned} (g \circ f)(n) &= g(f(n)) \\ &= g(n - 1) \\ &= (n - 1)^2 \\ &= n^2 - 2n + 1 \quad . \end{aligned}$$

So even though both $f \circ g$ and $g \circ f$ are both well-defined, $f \circ g$ is **not the same function as $g \circ f$** .

We conclude that **the composite of two functions depends on the order in which they are composed.**

DEFINITION 6.3. *A function $f : A \rightarrow B$ is said to be **injective** (or **one-to-one**) if whenever $f(a) = f(a')$, $a = a'$.*

DEFINITION 6.4. *A function $f : A \rightarrow B$ is said to be **surjective** (or **onto**) if every element $b \in B$ is in the image of the f ; i.e., $b = f(a)$ for some $a \in A$.*

DEFINITION 6.5. *A function $f : A \rightarrow B$ is said to be **bijective** (or a **bijection**) if f is both injective and surjective.*

THEOREM 6.6. *A function $f : A \rightarrow B$ is bijective if and only if there exists a function $g : B \rightarrow A$ such that

$$g \circ f = I_A \quad \text{and} \quad f \circ g = I_B \quad ,$$*

where $I_A : A \rightarrow A$ and $I_B : B \rightarrow B$ are, respectively, the identity maps of A and B .