

Math 4023 Homework Set 6

1. Use the definition of convergence to show
 - (a) For any real number k , $\lim_{n \rightarrow \infty} (k/n) = 0$
 - (b) For any real number $k > 0$, $\lim_{n \rightarrow \infty} (1/n^k) = 0$
 - (c) $\lim (3n + 1)/(n + 2) = 3$
2. Show that the following sequences are divergent.
 - (a) $a_n = 2n$
 - (b) $b_n = (-1)^n$
3. Suppose that $\lim s_n = 0$ and that t_n is a bounded sequence. Prove that $\lim (s_n t_n) = 0$.
4. Suppose that $\lim s_n = s > 0$. Prove that there exists an $N \in \mathbb{R}$ such that $s_n > 0$ for all $n > N$.
5. Prove that if x is an accumulation point of a set S if and only if there exists a sequence (s_n) of points in $S \setminus \{x\}$ such that (s_n) converges to x .
6. Prove that a set is closed if and only if whenever (s_n) is a convergent sequence of point in S , it follows that $\lim s_n$ is in S .
7. Determine whether the following sequences are convergent or divergent.
 - (a) $s_n = (3 - 2n)/(1 + n)$
 - (b) $s_n = (-1)^n/(n + 3)$
 - (c) $s_n = (-1)^n n/(2n - 1)$
 - (d) $s_n = (2^{3n})/(3^{2n})$
 - (e) $s_n = n^2/2^n$