LECTURE 4

Methods of Proof, Cont’d

1. Review

Last week we discussed a variety of techniques for proving propositions of the form
P=Q

Three of these are indicated diagrammatically below:

The Forward Backward Method

P=P=PR=---"-=0Q.:=0Q1=0Q
Proof by Contradiction
r ?S true - = Contradiction with known results
not-Q is true

Contrapositive Method
not-QQ = --- = not-P

We also discussed Proof by Construction as a method useful in propositions involving an existential
quantifier (like “there exists at least one”). In this method one explicitly constructs the desired object to
confirm its existence.

The next example is basically a proof by contradiction; however it also involves a bit of the construction
method.

2. Proof by Mathematical Induction

Let N denote the set of non-negative integers with the usual ordering relation
a>b < aZbanda—beN
Thus,
N={0,1,2,3,4,...}

We shall also assume this fundamental axiom:

Axiom 1. (Well-Ordering Axziom) Every non-emply subset of N contains a smallest element.

This is certainly true when we restrict attention to non-empty subsets containing only a finite number of
elements. However, when the subsets considered are infinite there is no means to prove this axiom except
by assuming an equivalent axiom. But neither can one prove (without new hypotheses) that this axiom is
false; so we will run into no problems down the line by adopting this axiom from the start as a property of
the set of natural numbers.
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2. PROOF BY MATHEMATICAL INDUCTION 13

An important consequence of the Well-Ordering Axiom is the method of proof known as mathematical
induction. It can be used to prove statements like

zn:i— n(n+1)
a2
=1

Let us denote this statement by P(n). We observe that

PO) & 0:@
Pl) & 1:172)

P2 & 1+2:@

PB) & 1+2+3:¥

and so the statement certainly appears to be true for low values of n. The problem is to prove the statement
for all values of n.

Here is the basic tool for accomplishing this.
THEOREM 4.1. (The Principle of Mathemalical Induction) Suppose thatl for each nonnegalive integer n, a
statement P(n) is given. If

(i) P(0) is a lrue statement; and
(ii)) Whenever P(k) is a lrue statement, then P(k+ 1) is also true;

then P(n) is a true stalement for every n € N.

Proof. Let
S={neN]|P(n)is false}.

To prove the theorem, we need to show that S is empty. We shall use proof by contradiction to do this.
Suppose S is non-empty. Then by the Well-Ordering Axiom S contains a smallest element, say d. Since
P(0) is true by hypothesis, and P(d) is false, since d € S, we must have d # 0. Consequently, d > 1; and
sod—1¢€ N. Now

d—1<d
and d is the smallest element of S, so d — 1 ¢ S. Therefore,
P(d—1) is true.
However, property (ii), with £ = d — 1, implies that
P(d—1+1) = P(d)

is a true statement. This is a contradiction since d € S. Therefore, S is the empty set and the theorem is
proved.

To apply this theorem in a mathematical proof, one simply has to verify the hypotheses (i) and (ii) are
satisfied by the proposition in question.

ExaMPLE 4.2. Use mathematical induction to prove

Zn:i _n(n+1)
; N 2
1=1
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Well, as we have seen above, the statement P(0) is equivalent to

0(2)
0=—"
2
and so P(0) is certainly true. Now we must show the inductive hypothesis
(4.1) P(k) is true = P(k+1) is true

is satisfied. So we assume that

(4.2) Zz _ kk+1)

=1 2
and try to show that (4.2) implies
k+1
. (k+1)(E+2)
4.3 =~ M 7
(4.3) ; i 5
Now the right hand side of (4.3) can be written
k41 k
dio= D i+ (k+1)
i=1 i=1
k(k+1
= % +(k+1) (if (4.2) is true)
K 43k+2
B 2
(k- 1)(E+2)
B 2
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and so (3) is confirmed. Having satisfied both hypotheses of the Principle of Mathematical Induction, we

may conclude that

1)
ZZ—L , forallneN

Homework

1. Prove, by the contrapositive method, that if ¢ is an odd integer then the equation n2 4+ n — ¢ has no

integer solution for n.

2. Prove, by mathematical induction, that

Z n—|—1(2n—|—1)



