

LECTURE 17

Monotone Sequences and Cauchy Sequences

DEFINITION 17.1. A sequence (s_n) of real numbers is *increasing* if $s_{n+1} \geq s_n$ for all $n \in \mathbb{N}$, and is *decreasing* if $s_{n+1} \leq s_n$ for all $n \in \mathbb{N}$. If a sequence is *monotone* if it is either increasing or decreasing.

THEOREM 17.2 (Monotone Convergence Theorem). A monotone sequence is convergent if and only if it is bounded.

Proof.

\Rightarrow We have already proved (Theorem 16.13 in the text) that every convergent sequence is bounded. So, in particular, if (s_n) is a convergent monotone sequence then it is bounded.

\Leftarrow Suppose (s_n) is a bounded increasing sequence. By the Completeness Axiom the set

$$S = \{s_1, s_2, s_3, \dots\}$$

must have a least upper bound since it is bounded. Let $s = \sup(S)$. We claim $\lim s_n = s$. To prove this we simply note that given any $\varepsilon > 0$, $s - \varepsilon$ is not an upper bound for S . Therefore, there exists an N such that $s_N > s - \varepsilon$. Furthermore, since (s_n) is increasing $s_n \geq s_N$ for all $n > N$. Hence,

$$n > N \Rightarrow s - \varepsilon < s_n \Rightarrow |s_n - s| < \varepsilon$$

and so (s_n) converges to s .

The case when (s_n) is a decreasing monotone sequence is similar. \square

THEOREM 17.3. Suppose (s_n) is an unbounded monotone sequence.

- (1) If (s_n) is increasing then $\lim s_n = +\infty$.
- (2) If (s_n) is decreasing then $\lim s_n = -\infty$.

Proof.

(a) Let (s_n) be an increasing sequence and that $S = \{s_1, s_2, \dots\}$ is unbounded. Since (s_n) is increasing S will be bounded from below by s_1 , so S must be unbounded from above. Thus, given any $M \in \mathbb{R}$, there exists an $N \in \mathbb{N}$ such that $s_N > M$. But since (s_n) is increasing we also have

$$n > N \Rightarrow s_n \geq s_N \Rightarrow s_n > M.$$

So, by definition, $\lim s_n = +\infty$.

The proof of (b) is similar. \square

DEFINITION 17.4. A sequence of real numbers is said to be a *Cauchy sequence* if for every $\varepsilon > 0$ there exists a number N such that $m, n > N$ implies that $|s_n - s_m| < \varepsilon$.

LEMMA 17.5. Every convergent sequence is a Cauchy sequence.

Proof. Suppose that (s_n) converges to s . To show that, for sufficiently large m and n , s_m is close to s_n , we use the fact that they are both close to s . From the Triangle Inequality we have

$$|s_n - s_m| = |s_n - s - (s_m - s)| \leq |s_n - s| + |s_m - s|$$

Now fix $\varepsilon > 0$. Since (s_n) converges to s there exists an N such that

$$k > N \Rightarrow |s_k - s| < \frac{\varepsilon}{2}$$

This then implies that

$$n, m > N \Rightarrow |s_n - s_m| \leq |s_n - s| + |s_m - s| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

so the sequence (s_n) is a Cauchy sequence.

LEMMA 17.6. *Every Cauchy sequence is bounded.*

Proof. (Homework problem)

THEOREM 17.7 (Cauchy Convergence Theorem). *A sequences of real numbers is convergent if and only if it is Cauchy sequence.*

Proof. We have already seen that every convergent sequence is a Cauchy sequence. We shall now prove the converse, that every Cauchy sequence converges.

Let (s_n) be a Cauchy sequence and suppose $S = \{s_1, s_2, \dots\}$ is the set of its values (without duplication). We consider two cases:

- Suppose S is finite. Let

$$\delta = \min \{|s_i - s_j| \mid s_i, s_j \in S\},$$

the minimal distance between distinct members of S . Note that $\delta > 0$. Since (s_n) is Cauchy, there exists a $N \in \mathbb{N}$ such that

$$m, n > N \Rightarrow |s_n - s_m| < \delta$$

But this cannot happen unless $s_n = s_m$ since the minimal distance between distinct s_n and s_m is δ . Thus,

$$m, n > N \Rightarrow s_n = s_m = s_{N+1}$$

and so the sequence (s_n) must converge to s_{N+1} .

- Suppose S is infinite. From the preceding lemma we know that S is bounded. The Bolzano-Weierstrass Theorem then tells us that S must have an accumulation point. Let s be such an accumulation point. We claim that (s_n) converges to s .

Let $\varepsilon > 0$. Since (s_n) is Cauchy, there exists an N such that

$$n, m > N \Rightarrow |s_n - s_m| < \frac{\varepsilon}{2}$$

Since s is an accumulation point, the neighborhood

$$N(s, \varepsilon/2) = (s - \varepsilon/2, s + \varepsilon/2)$$

contains infinitely many points of S . Thus, in particular there must exist an $m > N$ such that $s_m \in N(s, \varepsilon/2)$. Hence for any $n > N$ we have

$$|s_n - s| = |s_n - s_m + s_m - s| \leq |s_n - s_m| + |s_m - s| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Hence,

$$\lim (s_n) = s.$$

□