LECTURE 2

Subspaces and Linear Independence

Last time we defined the notion of a field F as a generalization of the set of real numbers, and the notion of
a vector space over a field F as a generalization of the vector space R™ (or any other vector space studied in
Math 3013). Today we continue to translate ideas developed in Math 3013 to the setting of a vector space
over a field F. In so doing, none of the definitions change much, all we really do is substitute F for R in the
old definitions. But we’ll proceed anyway, since it affords us an opportunity to simultaneously review the
development in Math 3013 as we substantiate the setting of Math 4063.

DEFINITION 2.1. We say that a set S is closed under an operation * if the outcome of applying the
operation * to elements of S is another element of S.

Thus, for example, the set of real numbers is closed under addition and multiplication; because whenever
you add two real numbers you get another real number, and whenever you multiply two real numbers you
get another real number.

DEFINITION 2.2. Let V' be a vector space over a field F and let U be a subset of the elements of V.. We say
that U is a subspace of V if U is closed under the operations of scalar multiplicaition and vector addition:
In other words, U is a subspace if

(1) (ueU and a€lF) = oauel

(2) u,uo €U = wui+uyelU

REMARK 2.3. While there are two separate conditions to check in order to confirm that a given subset is a
subspace, one can check both conditions simultaneously via

U is a subspace <= auj + fuz € U for all o, 5 € F and all uy,us € U

By the way, when V is a vector space over a field F, we will refer to expressions of the form aju; + asus +
<o 4 apug with ag,...,ar € F and uy,...,ur € V as a linear combination of elements of V.

This equivalence by the way is easy to prove; I'll prove this statement and it’s generalization below.

EXAMPLE 2.4. Let C (R) be the set of real-valued functions on the real line. Show that the subset S
consisting of functions vanishing at z = 0 is a subspace of C (R).

e We want to check that af + fg € S for any real numbers «, 5 and any functions f,g € S. Now
for a function h (z) to belong to S simply requires h (0) = 0. So the question is does af + B¢
evaluated at 0 always equal 07

0="(af +89) (0) = af (0) + Bg (0) = -0+ 5-0=0
So, indeed, S is a subspace of C (R).

EXAMPLE 2.5. Let C (R) again be the set of real-valued functions on the real line and let T be the set of
functions whose value at = 01is 1. Is T a subspace of C (R)?

o Well, proceeding as before, we need to check that the function af + 8¢ evaluates to 1 at © =0
whenever f,g € T and «, 8 € R. But

1="(af +89)(0)=af(0) +Bg(0)=a-1+B-1=a+ B #1 in general
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So T is not a subspace of C (R).

By the way, here is a simple necessary condition for a subset S of a vector space V' to be a subspace.

PROPOSITION 2.6. If S is a subspace of a vector space V , then Oy € S.

Proof. A subspace S will be closed under scalar multiplication by elements of the underlying field F, in
particular, S will be closed under scalar multiplication by Op. But

Op-v=0y forallveV

When v € S we still have Op - v = 0y and we also have 0y = Op - v € S because S is closed under scalar
multiplication. 0

Here another prototypical example of a subspace. Let A be an n x n matrix and let S be the solution set
of Ax = 0;
S={xeR"| Ax =0}

Then S is a subspace of R™.

e Indeed, suppose x,y € S are solutions and «, 8 € R. We want to show that any linear combination
of the form ax + By is also a solution. We have

A (ax + By) = A (ax) + A (By)
because matrix multiplication distributes over vector addition. Then
= aAx + Ay
because matrix multiplication commutes with scalar multiplication. Then
= a0+ 30

because x,y are, by hypothesis, solutions of Ax = 0. Since any scalar muliple of the 0 vector is
the 0 vector, we reach the desired conclusion:

Alax+py)=0 = ax+pPyeS

Since every linear combinations of two elements of S is an an element of S, S is a subspace.

PROPOSITION 2.7. A subset S of a vector space V' over a field F is a subspace if and only if every linear
combination of the form av + Bu with o, B € F , v,u € S isin S.

Proof.

= . Suppose S is a subspace of V, o, € F, and u,v € S. Then av and Su are both in S, since
subspaces are closed under scalar multiplication. But then av + fu € S since subspaces are also closed
under vector addition.

<= . Suppose av + fu € S for every «, 8 € F and every u,v € S. Then we have in particular Oy € S
when we specialize o = = Op. And then when we specialize to 8 = 0y we have

So>av+0pu=av+ 0y =av
so S is closed under scalar multiplication. Specializing to o = 1p and 8 = 1y we have
Seav+fu=1lpv+lpu=v+u

so S is also closed under vector addition. Since S is closed under scalar multiplication and vector addition,
S is a subspace of V. O
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Below I will give also an easy corollary; primarily for the purpose of demonstrating an inductive proof. But
first let me remind you all how a proof by induction works. Suppose you have not one statement, but a
whole series of special cases to prove

Py = Q1

P Qo
Py = Qs

)

If circumstances allow one can do do this both effectively and efficiently by employing a proof by induction.
This works as follows:

e First. prove that P, = (@ is true.
e Secondly, prove that if P, = @, is true then necessarily the next subsequent statement
Poir = Qpy1 is true.

If you can accomplish these two steps, you have succeeded in proving P, = Qi for all kin {1,2,3,...}

COROLLARY 2.8. If S is a subspace, then any linear combination ayvy + asve + - - - + agvg of elements of
V is also in S.

Proof. We will use proof by induction. We wil regard the intial case to prove as being
S is a subpace = v €S for all o7 € F and for all v; € S
and that the k' special case as being
S is a subspace = v+ -+ agvp €S for all avy,...,a € F and for all vy,...,v, € S

The statement of the initial case is true by the definition of a subspace (the part about closure under scalar
mulitplication). This accomplishes the first step of an inductive proof.

Now are to prove that
(the truth of P, = @;) = (thetruthof Pyy1 = Qkit1)
So assume the k' special case is true
a1+ -+ agup €S for all aq,...,a; € F and for all vy,...,v € S

Now a41vg+1 is also in S for any ag41 € F and any vi41 € S. And then since both ayv1 + -+ + agvr € S
and ax4+1vk+1 € S, and because the subspace S is closed under vector addition it must be that

@101 + -+ apUg + Qp11Vk+1 € S for all aq,...,ak, apr1 € F and for all vq,..., 05, 0541 €5

And so the (k + 1)th statement is also true. This then completes the inductive proof. O

Here is another standard construction of a subspace.

DEFINITION 2.9. Let {v1,...,v;} be a set of vectors in a vector space V.. Then the set
spang (v1,...,vg) = {aqvy + -+ apvg | @1, ..., a € F}
(where the coefficients ai, ..., vary over all possible element of F) is called the span of the wvectors

{’l)l,...7’l)n}.

PROPOSITION 2.10. The span of a set of vectors in V is a subspace of V.
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Proof.
It suffices to show that any linear combination of two elements of spang (v1,...,vx) is again an element of
spang (v1,...,v;). Let

U = U1+ + gk
= B+ + Bk
be arbitary elements of the span, and let o and S be arbitrary eleements of F. Then
au + P a(oqvr + -+ ago) + B (Byv1 + -+ + Brok)
(aar)vr + (BB1) v1 + -+ - + (aag) vk, + (BB),) vk
(aar + BBy) v1 + - + (aau + BB) vk

spang (vh e Uk)

m

]

This construction of a subspace arises very frequently. So frequently, we may as well introduce some
corresponding terminology.

DEFINITION 2.11. The subspace spang (v1,...,vx) is the subspace generated by vectors vi,...,v,. A
subspace S is said to be finitely generated whenever there exists a finite set of vectors {v1,..., vk} such
that S = spang (v1,...,0k).

1. Linear Dependence

We now come to a fundamental idea. Just above, we have constructed subspaces by taking linear combina-
tions of vectors. On the other hand, we have also seen that when you take a linear combination of vectors
that lie within a subspace, you don’t leave a subspace. This means that whenever

Vg1 € span (v, V2, ..., V)
the subspace span (v, ..., vk, Vg+1) coincides with the subspace span (v1,...,vr). But thinking of a vector
in span (vi,...,v;) as a linear combination of k 4 1 vectors is making things more complicated rather than
simpler. So if you have a subspace S = span (v1,...,vx) it should make matters simpler if we can reduce
the number of generators needed to produce span (vi,...,v,). This we can do by removing any generator
that can be expressed as a linear combination of the other generators.

PROPOSITION 2.12. span (v1,...vk+1) = span (vi,...,vx) if and only vkr1 € span (v, ..., V).

Proof. Let S = span (v1,...,v;). An element of span (vy, ..., vk, vg11) is just an element of S plus a scalar
multiple of vi11. But if vy is a linear combination of vy, ..., vk, then vi41 and all of its scalar multiples are
also in the subspace S. Since S is closed under vector addition we conclude that S = span (v1, ..., vk, Vgt1).

On the other hand, if span (v1,...,vx) = span (v1, .. ., Vg, Vkt+1) then since vy 1 itself lies in span (v1, . . ., Vg, Vgt1) =
span (v1,...,v), v can be written as a linear combination of the vy, ..., vg. ([l

What makes this sort of situation especially problematic is that it’s not alway easy to tell (at least by
inspection alone) when one vector is expressible in terms of another. Or even which vector to toss out! For
example, if

V3 — 21)1 — V2
we also have

vy = 207 — VU3
and

V] = 5’1}2 + 5’03
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Thus,

span (v1,v2,v3) = span (v1,v2) = span (v1,v3) = span (ve, v3)

The following definition is meant to democratize the ambiguity exhibited in preceding example.

DEFINITION 2.13. A set of vectors vy, ...,v is said to be linearly dependent if the vectors satisfy an
equation of the form

(1) a1v1 + -+ agvy =0

with at least one coefficient a; # 0. An equation of the form (1) (with at least one non-zero coefficient) is
a called a dependence relation (amongst the vectors vy, ..., vg).

It

a1v1 + -+ agvy =0

is a dependence relation, the stipulation that at least one coefficient, say «;, is non-zero, allows us to scalar
muliply the dependence relation by ai to get

a1 Q2 01 Qit1 Qk
—v1+ —vat -+ Vi1 + v + Vg1 + -+ —up =0
(%) a5 Q5 (67 (673
or
g Qi1 Q41 (675
Vi = ——U1 —** — Vi—1 — Vg1 — o — — Uk € Span (Vi,. .., Vi_1,Vis1,- - -, Vk)
(673 Q; Q; Q;
Thus, whenever we have a dependence relation amongst vectors v1, . . ., vx we can reduce the set of generating
vectors for S = span (v1,...,vr) by one member. The procedure is just to remove a vector that has a non-

zero coefficient in the dependence relation.

If we have lots of dependence relations then we can remove lots of generators our initial set. But eventually
this process has to terminate (the subspace generated is staying the same, we are only removing superfluous
generators). One must finally reach a point where there is no longer a viable dependence relation. That
final condition we formulate as follows.

DEFINITION 2.14. A set of vectors vy, ..., v is said to be linearly independent if the only way of satisfying
avr + -+ agv, =0

is to take all the coefficients a1, ...,a; equal to Op.

REMARK 2.15. I'd like to point out that the discussion above is kind of typical for this course in the following
sense. We started with a simple notion (a subspace) and simple way of constructing such things (taking
linear combinations of vectors). Then I pointed out that unfortunately the same subspace can produced in
lots of different ways and that it’s hard to tell when two such constructions give the same result (in other
words, it’s hard to check equalities between subspaces). So we found a simple way to make matters simpler
(tossing out superfluous vectors). But that too introduced some ambiguity (which vectors do we toss out?).
To accommodate and indeed better reflect this ambiguity we figured out the essential thing that had to
happen if we were to remove a generator without changing the subspace. That’s how we arrived at the
definition of linear independence.

What I want to point out is that the idea of linear independence is not particularly well encapsulated by
its definition (Definition 2.13). Rather to get a good grasp of the notion of linear independence you need
to keep in mind the flow of ideas from which it sprung; this grasp will improve, as we move on, when you
also keep in mind the ideas it allows you to connect.

PROPOSITION 2.16. Let v1,vy be two non-zero vectors in a vector space over a field F. Then {vy,va} is a
linearly dependent set if and only if there is a scalar non-zero o € F such that va = awvy.
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Proof.

= Suppose {v,v} are linearly dependent. Then, by definition, there exists scalars oy, € F such
a1V +apvy = 0y and for which at least one of a1, does not equal Or. By reordering v, and v if necessary,

we can assume that ay # Op. But then (o)™ " exists (via the field axioms) and so

Oy

(az) ' (@11 + azvs) = (02)
The right hand side easily evaluates to Oy. The left hand side evaluates to (042)_1 a1 + v2. So we have
-1
(012) (65} —+ Vg = OV

Adding — ((ag)fl awl) to both sides we then get

Vg = — (Olg)il [65K%1

Since — (az) " a1 € F we have demonstrated that if {vy, vy} are linearly depedent then there is a Op # a € F
such that vy = aw;.

<= Suppose vy = av;. Then adding —awv; to both sides we have
—av] + vy = O

Since the coefficient of vy in this relation can be taken to be 1p # 0, v; and vy are linearly dependent.

O

REMARK 2.17. Notice how patient I was in presenting the proof. Every little step was explained. This
was done not to insult your intelligence. Rather my purpose was two-fold. First of all, I wanted to keep
reminding you of the general setting in which we are working (vector spaces over a general field - where the
actual notions of vectors, scalar multiplication and vector addition could be pretty weird). Secondly, I tried
to leave no step unexplained so that I didn’t hide from myself a gap in the proof.



