
Math 4063-5023
SOLUTIONS TO SECOND EXAM

9:00 – 10:14 , November 10, 2015

1. Definitions. Write down the precise definitions of the following notions. (5 pts each)

(a) a vector space homomorphism (a.k.a. linear transformation)

• A mapping T : V →W between two vector spaces is a vector space homomorphism if

T (λv) = λT (v) for all λ ∈ F and all v ∈ V
T (v + v′) = T (v) + T (v′) for all v, v′ ∈ V

(b) the kernel of a vector space homomorphism

• If T : V →W is a vector space homomorphism then

ker (T ) = {v ∈ V | T (v) = 0W }

(c) the range of a vector space homomorphism

• If T : V →W is a vector space homomorphism then

range (T ) = {w ∈W | w = T (v) for some v ∈ V }

(d) a vector space isomorphism

• If T : V →W is a vector space isomorphism if

range (T ) = W

ker (T ) = {0V }

(e) The quotient space V/S (where S is a subspace of a vector space V ).

• Let
v + S = {v + s ∈ V | s ∈ S} (the S-hyperplane through v)

then
V/S = {v + S | v ∈ V } (the set of S-hyperplanes in V )

2. (15 pts) A function f : V −→ W is injective if f(v) = f(u) implies v = u. Show that a linear
transformation T : V −→W is injective if and only if its kernel is {0V }.

• ⇒ We first note that for any linear transformation T (0V ) = T (0F · v) = 0F · T (v) = 0W , and so
0V always belongs to ker (T ). Now suppose T is injective and v ∈ ker (T ). We have

v ∈ ker (T ) ⇒ T (v) = 0W = T (0V )

⇒ v = 0V since T is injective

Therefore, 0V is the only vector in ker (T ) : ker (T ) = {0V }.
⇐= Suppose ker (T ) = {0V } and T (v) = T (v′). Then

0W = T (v)− T (v′)

= T (v − v′) because T is a linear transformation

⇒ v − v′ ∈ ker (T ) by the definition of ker (T )

⇒ v − v′ = 0V since by hypothesis ker (T ) = {0V }
⇒ v = v′

Thus, if ker (T ) = {0V }, then T (v) = T (v′) ⇒ v = v′ and so T is injective.
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3. Let Pn be the vector space of polynomials of degree ≤ n. Consider the function T : P3 → P3 given by

T (p) =
d2p

dx2
− 2x

dp

dx
+ 2p

(a) (5 pts) Show that T is a linear transformation (Hint: use general properties of derivatives rather than
an explicit basis for Pn)

• We just need to show T (αp1 + βp2) = αT (p1) + βT (p2) for any α, β ∈ R and any p1, p2 ∈ Pn.
We have

T (αp1 + βp2) =
d2

dx2
(αp1 + βp2)− 2x

d

dx
(αp1 + βp2) + 2 (αp1 + βp2)

= α
d2p1
dx2

+ β
d2p2
dx2

− 2αx
dp1
dx
− 2β

dp2
dx

+ 2αp1 + 2βp2

= α

(
d2p1
dx2

− 2x
dp1
dx

+ 2p1

)
+ β

(
d2p2
dx2

− 2x
dp2
dx

+ 2p2

)
= αT (p1) + βT (p2) X

(b) (5 pts) Find the matrix representing T acting on P2 (use the standard basis
{

1, x, x2
}

of P2).

•
1 7−→ 0− 2 · 0 + 2 ∗ 1 = 2 = 2 · 1 + 0 · x+ 0 · x2 → T (1)B = [2, 0, 0]

x 7−→ 0− 2 · x+ 2x = 0 = 0 · 1 + 0 · x+ 0 · x2 → T (x)B = [0, 0, 0]

x2 7−→ 2− 4x2 + 2x2 = 2 · 1 + 0 · x− 2 · x2 → T
(
x2
)
B

= [2, 0,−2]

So

AT,B =

 ↑ ↑ ↑
T (1)B T (x)B T

(
x2
)
B

↓ ↓ ↓

 =

 2 0 2
0 0 0
0 0 −2


(c) (5 pts) Find a basis for the range of T (with basis vectors expressed as polynomials),

• AT,B row reduces to  1 0 0
0 0 1
0 0 0


From this we see that the first and last columns of AT,B will provide a basis for ColSp (AT,B).
But ker (T )←→ ColSp (AT,B), so mapping [2, 0, 0] and [2, 0,−2] back to polynomials, we get

Range (T ) = span
(
2, 2− 2x2

)
(d) (5 pts) Find a basis for the kernel of T (with basis vectors expressed as polynomials).

• ker (T ) corresponds to the null space of AT,B . From the reduced row echelon form of AT,B we see
that the solution to AT,Bx = 0, are given by

x1 = 0
x3 = 0
0 = 0

⇒ x =

 0
x2
0

 = x2

 0
1
0


Thus, [0, 1, 0] is a basis for the null space of AT,B . Mapping it back to a polynomial, we get

ker (T ) = span (x)
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4. (10 pts) Let S be a subspace of a vector space V . Suppose {v1, . . . , vk} is a basis for V and
{v1, . . . , vk, vk+1, . . . , vn} is a compatible basis for V . Let pS : V → V/S : v 7−→ v + S be the canoni-
cal projection. Show that {pS (vk+1) , . . . , pS (vn)} is a basis for V/S.

• We need to show two things: (i) that V/S = span (pS (vk+1) , . . . , pS (vn)) and (ii) the vectors
pS (vk+1) , . . . , pS (vn) are linearly independent.

(i) Since pS : V → V/S is surjective, every element of V/S is of the form pS (v) for some
vector v ∈ V . Thus

V/S = {pS (v) | v ∈ V }
= {pS (a1v1 + · · · akvk + ak+1vk+1 + · · ·+ anvn) | a1, . . . , an ∈ F} since the vi form a basis for V

= {a1pS (v1) + · · ·+ akpS (vk) + akpS (vk+1) + · · ·+ anpS (vn) | a1, . . . , an ∈ F} since pS is a linear transformation

= {0V + · · ·+ 0V + ak+1pS (vk+1) | a1, . . . , an ∈ F} since v1, . . . , vk ∈ S = ker (pS)

= span (pS (vk+1) , . . . , pS (vn)) X

(ii) Now we’ll show that the vectors pS (vk+1) , . . . , pS (vn) ∈ V are linearly independent.
Suppose

(*) ak+1pS (vk+1) + · · ·+ anpS (vn) = 0V/S

Then, since pS is linear transformation, this implies

pS (ak+1vk+1 + · · ·+ anvn) = 0V/S ⇒ ak+1vk+1 + · · ·+ anvn ∈ ker (pS) = S

But the vectors vk+1, . . . , vn, by construction are linearly independent vectors outside of S. There-
fore,

ak+1vk+1 + · · ·+ anvn ∈ S ⇒ ak+1 = 0F , . . . , an = 0F

Hence, (*) requires ak+1 = ak+2 = · · · = an = 0R, and so the vectors pS (vk+1) , . . . , pS (vn) are
linearly independent.

5.

(a) (5 pts) Compute the determinant of A =

 1 1 −1
2 2 2
0 1 0

 using a cofactor expansion.

• Cofactor expansion along the last row:

det (A) = 0 + (1) (−1)
3+2

det

(
1 −1
2 2

)
+ 0

= − (2 + 2)

= −4

b. (5 pts) Compute the determinant of A =

 0 1 1
0 1 0
1 2 1

 using elementary row operations.

det (A) = det

 0 1 1
0 1 0
1 2 1

 R1 ←→ R3−−−−−−−−−−−→ = −det

 1 2 1
0 1 0
0 1 1


R3 → R3 −R2−−−−−−−−−−−−−−→ = −det

 1 2 1
0 1 0
0 0 1

 = − (1) (1) (1)

= −1
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6.

(a) (5 pts) Compute the cofactor matrix C of A =

(
a b
c d

)
.

C11 = (−1)
1+1

det
(
A(1,1)

)
= det ([d]) = d

C12 = (−1)
1+2

det
(
A(1,2)

)
= −det ([c]) = −c

C21 = (−1)
2+1

det
(
A(2,1)

)
= −det ([b]) = −b

C22 = (−1)
2+2

det
(
A(2,2)

)
= det ([a]) = a

C =

(
d −c
−b a

)
(b) (5 pts) Use the result of (a) to compute A−1.

A−1=
1

det (A)
CT =

1

ad− bc

(
d −b
−c a

)
=

(
d

ad−bc − b
ad−bc

− c
ad−bc

a
ad−bc

)
7. (10 pts) Let B1 =

{
1, x, x2

}
and let B2 =

{
1, x− 1, (x− 1)

2
}

. Regarding B1 and B2 as bases for the

vector space of polynomials of degree ≤ 2, find the change-of-coordinates-matrix that converts coordinate
vectors with respect to B1 to coordinate vectors with respect to B2.

• The change of basis matrix CB1→B2
is formed by figuring out the coordinate vectors of the vectors

in B1 with respect to the basis B2.

1 = 1 · 1 + 0 · (x− 1) + 0 · (x− 1)
2 ⇒ [1]B2

= [1, 0, 0]

x = 1 · 1 + 1 · (x− 1) + 0 · (x− 1)
2 ⇒ [x]B2

= [1, 1, 0]

x2 = 1 · 1 + 2 · (x− 1) + 1 · (x− 1)
2 ⇒

[
x2
]
B2

= [1, 2, 1]

So

CB→B′ =

 ↑ ↑ ↑
[1]B2

[x]B2

[
x2
]
B2

↓ ↓ ↓

 =

 1 1 1
0 1 2
0 0 1




