
MATH 4063-5023
Solutions to Homework Set 1

1. Let F be a field, and let Fn denote the set of n-tuples of elements of F, with operations of scalar
multiplication and vector addition defined by

λ · [α1, . . . , αn] : = [λa1, . . . , λan] , for all λ ∈ F and all [α1, . . . , αn] in Fn

[α1, . . . , αn] + [β1, . . . , βn] : = [α1 + βi, . . . , αn + βn] , for all [α1, . . . , αn] and [β1, . . . , βn] in Fn

Check that Fn satisfies all the axioms of a vector space over F.

• There are 8 axioms to check. We’ll check them one by one, constantly using the hypothesis that
F is a field (and so obeys the 9 axioms of a field (see Definition 1.7 of Lecture 1).
(i) Commutativity of Vector Addition

[α1, . . . , αn] + [β1, . . . , βn] : = [α1 + β1, . . . , αn + βn]

= [β1 + α1, . . . , βn + αn] because addition in F is commutative

: = [β1, . . . , βn] + [α1, . . . , αn]

(ii) Associativity of Vector Addition

([α1, . . . , αn] + [β1, . . . , βn]) + [γ1, . . . , γn] : = [α1 + β1, . . . , αn + βn] + [γ1, . . . , γn]

: = [(α1 + β1) + γ1, . . . , (αn + βn) + γn]

= [α1 + (β1 + γ1), . . . , αn + (βn + γn)] because addition in F is associative

: = [α1, . . . , αn] + [β1 + γ1, . . . , βn + γn]

: = [α1, . . . , αn] + ([β1, . . . , βn] + [γ1, . . . , γn])

(iii) Existence of Additivity Identity.
Set 0Fn = [0F, . . . , 0F]. Then for any vector [α1, . . . , αn] ∈ Fn

[α1, . . . , αn] + 0Fn = [α1, . . . , αn] + [0F, . . . , 0F]

: = [α1 + 0F, . . . , αn + 0F]

: = [α1, . . . , αn] because 0F is the additive identity in F

(iv) Existence of Additive Inverses
We need to show that for each vector v ∈ Fn there exists another vector (−v) ∈ Fn such that
v + (−v) = 0Fn . Let v = [α1, . . . , αn] and set −v = [−α1, . . . ,−αn]. The latter expression
makes sense since each element αi ∈ F has an additive inverse. Then

v+ (−v) = [α1, . . . , αn] + [−α1, . . . ,−αn]

: = [α1 + (−α1) , . . . , αn + (−αn)]

= [0F, . . . , 0F]

: = 0Fn

(v) Associativity and Compatibility of Scalar Multiplication
We need to show that if λ, µ ∈ F, then λ (µv) = (λµ)v for all v ∈ Fn. Let v = [α1, . . . , αn].
Then

λ (µv) = λ (µ [α1, . . . , αn])

= λ ([µα1, . . . , µαn])

= [λ (µα1) , . . . , λ (µαn)]

= [(λµ)α1, . . . , (λµ)αn] by associativity of multiplication in F
: = (λµ) [α1, . . . , αn]

= (λµ)v

1



2

(vi) Distibutativity of Scalar Multiplication over Addition of Scalars
We need to show that if λ, µ ∈ F and v ∈ Fn that (λ+ µ)v = λv+µv. Let v = [α1, . . . , αn].
Then

(λ+ µ)v = (λ+ µ) [α1, . . . , αn]

: = [(λ+ µ)α1, . . . , (λ+ µ)αn]

= [λα1 + µα1, . . . , λαn + µαn] by distributive law in F
: = [λα1, . . . , λαn] + [µα1, . . . , µαn]

: = λ [α1, . . . , αn] + µ [α1, . . . , αn]

= λv + µv

(vii) Distributivity of Scalar Multiplication over Vector Addition
We need to show that if λ ∈ F and [α1, . . . , αn] , [β1, . . . , βn] ∈ Fn then λ ([α1, . . . , αn] + [β1, . . . , βn]) =
λ [α1, . . . , αn] + λ [β1, . . . , βn]

λ ([α1, . . . , αn] + [β1, . . . , βn]) : = λ [α1 + β1, . . . , αn + βn]

: = [λ (α1 + β1) , . . . , λ (αn + βn)]

= [λα1 + λβ1, . . . , λαn + λβn] by distributativity of multiplication over addition in F
= [λα1, . . . , λαn] + [λβ1, . . . , λβn]

= λ [α1, . . . , αn] + λ [β1, . . . , βn]

(viii) Scalar Multiplication by 1F
We have for any v = [α1, . . . , αn] ∈ Fn

1F [α1, . . . , αn] := [1Fα1, . . . , 1Fαn] = [α1, . . . , αn]

and so scalar multiplication by the multiplicative identiy 1F in F acts trivially.
�

2. Let C1 (R) be the set of continuous, differentiable functions on the real line with values in R. Define
scalar multiplication and vector addition on C (R) by

(λ · f) (x) : = λf (x) , ∀ λ ∈ R , ∀ f ∈ C1 (R) ;

(f + g) (x) : = f (x) + g (x) , ∀ f, g ∈ C1 (R) .

Check that C1 (R) satisfies the axioms for a vector space over R.

• Below we check the axioms. In the computations below we constant use the circumstance that
two functions in C1 (R) coincide if they have exactly the same value at each point x ∈ R.
(i) Commutativity of Vector Addition

(f + g) (x) : = f (x) + g (x)

= g (x) + f (x) because addition in R is commutative

: = (g + f) (x)

(ii) Associativity of Vector Addition

((f + g) + h) (x) : = (f + g) (x) + h (x)

: = (f (x) + g (x)) + h (x)

= f (x) + (g (x) + h (x)) because addition in R is associative

: = f (x) + (g + h) (x)

: = (f + (g + h)) (x)

(iii) Existence of Additivity Identity.
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Set 0C1(R) to be the function on R with constant value 0. Then for any function f ∈ C1 (R)(
f + 0C1(R)

)
(x) : = f (x) + 0C1(R) (x)

= f (x) + 0

= f (x)

(iv) Existence of Additive Inverses
We need to show that for each function f ∈ C1 (R) there exists another function −f ∈ C1 (R)
such that f + (−f) = 0C1(R). Define the function −f by f (x) = (−1) ∗ f (x). Then

(f + (−f)) (x) = f (x) + (−f) (x) = f (x) + (−1) ∗ f (x) = 0

Since f + (−f) vanishes for all x, it must coincide with the additive identity 0C1(F) defined in
(iii).

(v) Associativity and Compatibility of Scalar Multiplication
We need to show that if λ, µ ∈ R then λ (µf) = (λµ) f for all f ∈ C1 (R). We have

(λ (µf)) (x) = λ · ((µf) (x))

= λ · (µ · f (x))

= (λµ) · f (x)

= ((λµ) f) (x)

(vi) Distibutativity of Scalar Multiplication over Addition of Scalars
We need to show that if λ, µ ∈ R and f ∈ C1 (R ) then (λ+ µ) f = λf + µg. We have

((λ+ µ) f) (x) : = (λ+ µ) · f (x)

= λf (x) + µf (x) by distributive law in R
: = (λf) (x) + (µf) (x)

(vii) Distributivity of Scalar Multiplication over Vector Addition
We need to show that if λ ∈ R and f, g ∈ C1 (R), then λ (f + g) = λf + λg. We have

(λ (f + g)) (x) : = λ · (f + g) (x)

: = λ · (f (x) + g (x))

: = λf (x) + λg (x) by distributive law in R
: = (λf) (x) + (λg) (x)

(viii) Scalar Multiplication by 1 = 1R
We have for any f ∈ C1 (R) we have

(1 · f) (x) := 1 · f (x) = f (x)

and so scalar multiplication by the multiplicative identiy 1 in R acts trivially.
�

3. Determine which of the following subsets are subspaces of C1 (R)

(a) The set of polynomial functions in C1 (R) .
• The set of polynomial functions on R form a subset of C1 (R), to show that it is in fact a subspace

just need to show that the polynomial functions are closed under the operations of taking linear
combinations. Suppose f (x) = anx

n+· · ·+a1x+a0 and g (x) = bmx
m+· · ·+b1x+b0. Without loss

of generality, we can assume m = n (For example, if m < n we can add 0·xn+0·xn−1+· · ·+0·xm+1

to g without changing its values as a function.) Then

(αf + βg) (x) = (anx
n + · · ·α1x+ a0) + (bnx

n + · · ·+ b1x+ b0)

= (αn + bn)xn + · · ·+ (a1 + b1)x+ (a0 + b0)

Since the expression on the far right is a polynomial function, we conclude that the subset of
polynomial functions is closed under scalar multiplication and vector addition; hence, it is a
subspace of C1 (R).
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(b) The set of all functions f ∈ C1 (R) such that f
(
1
2

)
is a rational number.

• This is not a subspace. To be a subspace it would have to be closed under scalar multiplication by
any real number. If we take any function f such that f

(
1
2

)
= 1, then f lies in the stated subset.

But
√

2 · f is not in this subset since its value at x = 1
2 is
√

2 · f
(
1
2

)
=
√

2 · 1 =
√

2 /∈ Q.

(c) The set of all f ∈ C1 (R) such that f
(
1
2

)
= 0.

• This is a subspace of C1 (R). To see this consider an arbitary linear combination αf + βg of such
functions

(αf + β (g)) (x) = αf (x) + βg (x) = α · 0 + β · 0 = 0

Since a linear combination is always in the stated subset of C1 (R), the stated subset is a subspace
of C1 (R).

(d) The set of all f ∈ C1 (R) such that
∫ 1

0
f (x) dx = 1

• This is not a subspace, since it is closed neither under scalar multiplication or vector addition.
Explicitly, if f, g belong to this subset of C1 (R) and α, β ∈ R, then αf + βg satisfies∫ 1

0

(αf + βg) (x) dx = α

∫ 1

0

f (x) dx+ β

∫ 1

0

g (x) dx = α · 1 + β · 1 6= 1 in general

(e) The set of all f ∈ C1 (R) such that
∫ 1

0
f (x) dx = 0

• This a subspace. Let f, g belong to this subset of C1 (R) and α, β ∈ R, then αf + βg satisfies∫ 1

0

(αf + βg) (x) dx = α

∫ 1

0

f (x) dx+ β

∫ 1

0

g (x) dx = α · 0 + β · 0 6= 0 always

and so the subset is closed under scalar multiplication and vector addition; hence it is a subspace.
(f) The set of all f ∈ C1 (R) such that df

dt = 0.

• This is a subspace of C1 (R). Suppose f, g belong to this subset and α, β ∈ R. Then(
d

dx
(αf + βg)

)
= α

df

dx
+ β

dg

dx
= α · 0 + β · 0 = 0

and the so the stated subset is closed under scalar multiplication and vector addition; hence it is
a subspace.

4. Prove that a subspace (a subset of a vector space that is closed under scalar mulitiplication and vector
addition) is itself a vector space by verifying all 8 axioms.

• Here it is to be understood that the operations of scalar mulitiplication and vector addition in S
are just the restrictions of the corresponding operations in V . Thus,

+S : S × S → S = +V |S
∗S : F× S → S = ∗V |S

The images of these restrictions is indeed S since S is closed under scalar multiplication and vector
addition. (Here I’m using +V and ∗V to indicate addition and scalar multiplication of vectors in
V , and distinguishing that, at least notationally, from the addition and scalar multiplication of
vectors in S.)

Verification of the Axioms:
(i) v +S u = u+S v

v +S u ≡ v +V u defn. of addition in S

= u+V v since V is a vector space

= u+S v defn. of addition in S

(ii) (v +S u) +S w = v +S (u+S w)

(v +S u) +S w = (v +V u) +V w defn. of addition in S

= v +V (u+V w) since V is a vector space

= v +S (u+S w) defn. of addition in S
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(iii) Existence of Additivity Identity.
Since S is closed under scalar multiplication, if we start with an v ∈ S, 0F ∗S v ∈ S. But

0F ·S v = 0F ∗V v = 0V .

So 0V ∈ S. Moreover, for any vector u ∈ S

u+S 0V = u+V 0V = u

and so 0V is also an additive identity in S.
(iv) Existence of Additive Inverses

Since S is closed under scalar multiplication, if v ∈ S, so is (−1F ∗S v). But

v +S (−1F ∗S v) = v +V (−1F ∗V v)

= (1F ∗V v) +V (−1F ∗ v)

= (1F +F (−1F)) ∗V v

= 0F ∗V v

= 0V

= 0S

(v) (λµ) ∗S v = λ (µ ∗S v) for all λ, µ ∈ F and all v ∈ S :

(λµ) ∗S v = (λµ) ∗V v defn of scalar mult. in S

= λ ∗V (µ ∗V v) since V is a vector space

= λ ∗S (µ ∗S v) defn. of scalar mult. in S

(vi) (λ+ µ) ∗S v = (λ ∗S v) +S (µ ∗S v) for all λ, µ ∈ F and all v ∈ S :

(λ+ µ) ∗S v = (λ+ µ) ∗V v defn. of scalar mult. in S

= (λ ∗V v) +V (µ ∗V v) since V is a vector space

= (λ ∗S v) +S (µ ∗S v) defn of scalar mult and vector addition in S

(vii) λ ∗S (v +S w) = (λ ∗S v) +S (λ ∗S w) for all λ ∈ F and all v, w ∈ S :

λ ∗S (v +S w) = λ ∗V (v +V w) defn. of scalar mult. and vector addition in S

= (λ ∗V v) +V (λ ∗V w) since V is a vector space

= (λ ∗S v) +S (λ ∗S w) defn. of scalar mult. and vector addition in S

(viii) 1F ∗S v = v for all v ∈ S :

1F ∗S v = 1F ∗V v defn. of scalar mult. in S

= v since V is a vector space

�

5. Is the intersection of two subspaces a subspace (prove your answer)?

• Yes. Let W,U be two subspaces of a vector space V . The intersection of W and U is

W ∩ U = {v ∈ V | v ∈W and v ∈ U} .

Let u, v be any two vectors in W ∩U , and let α, β ∈ F. Consider the linear combination αv+βu.
Because, u, v ∈W ∩U, in particular, both u and v live in the subspace W . Since W is a subspace,
we have αu+βv ∈W . On the other hand, both u and v live in U , and so because U is a subspace,
αu + βv lies in U . Thus, αu + βv lies in both W and U and so it lies in W ∩ U . Thus, the
intersection of two subspaces is closed under scalar multiplication and vector addition; hence it
too is a subspace.

�

6. Is the union of two subspaces a subspace (explain your answer)?
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• No. A single counter-example can justify this claim. Consider the x and y axes of the usual
Cartesian plane R2.

`x = {[x, 0] | x ∈ R}
`y = {[0, y] | y ∈ R}

Each axis is a 1-dimensional subspace of R2. We have

`x ∪ `y = {v = [s, 0] or [0, s] | for some s ∈ R}
Then both [1, 0] and [0, 1] lie in `x ∪ `y. But

[1, 0] + [0, 1] = [1, 1] /∈ `x ∪ `y
So `x ∪ `y is not a subspace.

7. Show that a set of vectors which contains a linearly dependent set of vectors is itself a linearly dependent
set of vectors.

• Let S = {v1, . . . , vk} be a linear dependent set of vectors and let T = {v1, . . . , vk, vk+1, . . . , vm}
be another set of vectors containing S. Because S is a linearly dependent set, there must be a
dependence relation

α1v1 + · · ·+ αkvk = 0V

with not all αk = 0F. But then

α1v1 + · · ·+ αkvk + 0F · vk+1 + 0F · vk+2 + · · ·+ 0F · vm = 0V

and because we know at least one of the αi , 1 ≤ i ≤ k, is not equal to 0F this provides a
dependence relation for T . So the set T is a linearly dependent set as well.

8. Let {v1, . . . , vn} be a basis for a (non-trivial) vector space V . Show that vi 6= 0V for all i = 1, . . . , n.

• Suppose vi = 0V . Then

0F · v1 + 0F · v2 + · · ·+ 0F · vi−1 + 1R · vi + 0F · vi+1 + · · ·+ 0F · vn = 0V + 0V + · · ·+ 0V + 1 · 0V + 0V + · · ·+ 0V

= 0V

Since the coefficient of vi on the extreme left is non-zero, this identity furnishes us with a de-
pendence relation for {v1, . . . , vi, . . . , vn}. Hence this set of vector is linearly dependent. But the
vectors in a basis must be linearly independent. Thus, {v1, . . . , vi, . . . , vn} cannot be a basis.

�

9. Let {v1, . . . , vk} be a linearly independent set of vectors. Let

u = α1v1 + · · ·+ αkvk

w = β1v1 + · · ·+ βkvk

Prove that u = w if and only if α1 = β1, α2 = β2, . . . , αk = βk.

• ⇒ Suppose u = w. Then u− w = 0V . But then we have

(*) 0V = u− w = (α1 − β1) v1 + · · ·+ (αk − βk) vk

Now if any of the coefficients αi − βi on the right are non-zero, then (*) will furnish us with
a dependence relation for the set {v1, . . . , vk}. But by hypothesis, the vectors {v1, . . . , vk} are
linearly independent – and so we’ll have a contradition unless each αi − βi = 0F. But this just
means we must take αi = βi for each i, 1 ≤ i ≤ k.
⇐= Suppose α1 = β1, α2 = β2, . . . , αk = βk. Then we have

u = α1v1 + · · ·+ αkvk

= β1v1 + · · ·+ βkvk

= w
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�

10. Show that
{

1, x, x2, . . . , xn
}

is a basis for the vector space Pn of polynomials of degree ≤ n. (Hint: just
check that the definition of a basis is satisfied.)

• We need to show that
{

1, x, x2, . . . , xn
}

is a linearly independent set of generators for /Pn. By
definition, every polynomial p = a0 + a1x + · · · + anx

n of degree ≤ n is a linear combination of
1, x, . . . , xn; so

Pn = span (1, x, . . . , xn)

and {1, x, . . . , xn} is a set of generators for Pn. The zero vector in Pn is the zero polynomial

0Pn = 0 + 0 · x+ 0 · x2 + · · ·+ 0 · xn

Since two polynomials are equal if and only if all their coefficients coincide

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0Pn

requires
a0 = 0 , a1 = 0 , a2 = 0 , . . . , an = 0 .

Thus, the set{1, x, . . . , xn} is a linearly independent set of generators for Pn and hence a basis for
Pn.


