MATH 4063-5023
Solutions to Homework Set 1

1. Let F be a field, and let F™ denote the set of n-tuples of elements of F, with operations of scalar
multiplication and vector addition defined by

Afag,.c,an] 0 =[Aag,. .., Aay) , for all A € F and all [aq,...,q,] in F?
[a1, .. an] +[B1,--, 8, ¢ =lar+ 8-, an+8,] , for all [a1,...,a,] and [B4,...,8,] in F"

Check that F" satisfies all the axioms of a vector space over F.

e There are 8 axioms to check. We’ll check them one by one, constantly using the hypothesis that
F is a field (and so obeys the 9 axioms of a field (see Definition 1.7 of Lecture 1).
(i) Commutativity of Vector Addition

[ala"'7an]+[617"'75n] :[a1+61a"'7an+5n]
= [B;+ai,...,B8, +a,] because addition in F is commutative

- [ﬂlw-wﬁn] + [Otl,...,Oén}
(ii) Associativity of Vector Addition

([oay o yan]) + [Bry -5 Ba) F V1o 5¥n) = =lar+ 81y san+ 8,0+ V1 V)
= [(Oél+61)+717"'a(an+ﬂn)+7n]
= Jaa+ By +71)s-san+ (B, +7,)] because addition in [F is associative

= [al""7an]+[ﬁ1 +7177ﬁn+’7n]
= [alv"'van]"_([517""ﬁn]+[717"'a7n])
(iii) Existence of Additivity Identity.

Set Ogn = [Op, ...,0f]. Then for any vector [aq,...,a,] € F"
[Oél,...,()én]—FO[[rn = [Oél,...,an]—F[O]F,...,O]F]
= [041 —|—0]F,...,Oén+0ﬂ
=lag, ..., Q) because O is the additive identity in F

(iv) Existence of Additive Inverses
We need to show that for each vector v € F” there exists another vector (—v) € F™ such that
v+ (—v) =0pn. Let v =[ag,...,a,] and set —v = [—aq,...,—ay]. The latter expression
makes sense since each element «; € F has an additive inverse. Then

v+ (=v) = [a1,...,an]+[—a1,...,—ay]
=l + (—a1),...,an + (—ay)]
= [O]F,...,O]F]
= Opn

(v) Associativity and Compatibility of Scalar Multiplication
We need to show that if A, € F, then A (uv) = (Ap)v for all v e F*. Let v = [ag,...,ay].

Then
Apv) = Aplog,... an])
= A([pan, ..., pon])
= [A(poa), ..., A (pan)]
= [(Ap)at,...,(An) am] by associativity of multiplication in F
= () [ag, ..., an)

= (An)v



(vi) Distibutativity of Scalar Multiplication over Addition of Scalars
We need to show that if A\, x € F and v € F” that (A + p) v = Av+pv. Let v = [ag,...,ay].

Then
A+mv = Ot p)lon... )
=[N+ ar,..., (A p) oy
= Doy + pag, ..., Ay, + pag] by distributive law in IF
=g, ..., Aay] + [pag, . .. pag)]
=Aag, ..., an] +plag, ..., an]
= Av+uv

(vii) Distributivity of Scalar Multiplication over Vector Addition
We need to show that if A € Fand [aq,..., 0], [81,---,8,) € F* then A ([a1,...,an] + [B1,---,8,]) =
Ao, ...,an] + X [Bq, -5 B,

)\([alr"aan}+[ﬂla-~.7ﬂn]) : :)\[a1+ﬁl7"'aan+5n}
: :[/\(a1+61)7?A(an+Bn)]
= a1+ ABq,.. ., a, +A8,] by distributativity of multiplication over addition in F

= [)\O[L...,Aan] + [)\ﬂlavAﬁn]
= )\[0417...7057;}+)‘[/617"'aﬂn]

(viii) Scalar Multiplication by 1
We have for any v = [a1,...,a,] € F?

e o, .., o] == [Iran, .., Lean] = a1, ., ]
and so scalar multiplication by the multiplicative identiy 1p in F acts trivially.

]

2. Let C!' (R) be the set of continuous, differentiable functions on the real line with values in R. Define
scalar multiplication and vector addition on C (R) by

MA@ = =Af@ , VIeR ., Vfel (R);
(f+9)(z) : =f@)+g@) , VfgeC(R).
Check that C' (R) satisfies the axioms for a vector space over R.
e Below we check the axioms. In the computations below we constant use the circumstance that

two functions in C* (R) coincide if they have exactly the same value at each point = € R.
(i) Commutativity of Vector Addition

(f+9) () = =f(z)+g()
= g(z)+ f(x) because addition in R is commutative
=(g+f)(2)
(ii) Associativity of Vector Addition
(f+9)+h) (@) + = +g)(@)+h(z)
=(f (@) +g (@) +h(x)
= f(x)+ (g(x)+h(x)) because addition in R is associative

(
= f(x)+(g+h) ()
=(f+(g+h) ()

(iii) Existence of Additivity Identity.



Set Oci(gr) to be the function on R with constant value 0. Then for any function f € C' (R)

(f+0ciw) (x) = =[(2)+0ci(w (@)
= f@)+0
= f(2)
(iv) Existence of Additive Inverses
We need to show that for each function f € C* (R) there exists another function —f € C! (R)
such that f 4+ (—f) = O¢1(w). Define the function —f by f () = (1) * f (z). Then
(f+EN) @) =f @)+ (=) (@) =f @)+ (=)« f(z) =0
Since f + (—f) vanishes for all z, it must coincide with the additive identity Oc1 ) defined in
(ii).
(v) Associativity and Compatibility of Scalar Multiplication
We need to show that if A,z € R then A (uf) = (Au) f for all f € C* (R). We have

A ) (@) = A-((nf) ()
A (- f ()
(M) - f ()
= ((Aw) f) (@)

(vi) Distibutativity of Scalar Multiplication over Addition of Scalars
We need to show that if \,u € R and f € C' (R ) then (A + p) f = Af + ug. We have

A+ @) o =A+p)-f(2)
= M (z)+puf(x) by distributive law in R
= (Af) (@) + (uf) (z)

(vii) Distributivity of Scalar Multiplication over Vector Addition
We need to show that if A € R and f,g € C! (R), then A (f + g) = Af + A\g. We have

A +9) (@) = =A-(f+g)(2)
=A-(f(x) +g(2))
=M (z) + Mg (z) by distributive law in R
= (Af) (2) + (Ag) (z)
(viii) Scalar Multiplication by 1 = 1g
We have for any f € C' (R) we have
(1-f)(x):=1-f(z) = f(z)

and so scalar multiplication by the multiplicative identiy 1 in R acts trivially.

3. Determine which of the following subsets are subspaces of C! (R)

(a) The set of polynomial functions in C! (R).

e The set of polynomial functions on R form a subset of C! (R), to show that it is in fact a subspace
just need to show that the polynomial functions are closed under the operations of taking linear
combinations. Suppose f () = apz™+- - -+a1x+ag and g (x) = bpx™+- - -+b1x+by. Without loss
of generality, we can assume m = n (For example, if m < n we can add 0-2"+0-2" 1 +...4+0-2m*+!
to g without changing its values as a function.) Then

(af +B8g)(z) = (anz™+- - a1z +ap) + (bpa"™ + -+ + brx + by)
= (ap+by)a”+ -+ (a1 +b1)x+ (ag+ bo)

Since the expression on the far right is a polynomial function, we conclude that the subset of
polynomial functions is closed under scalar multiplication and vector addition; hence, it is a
subspace of C! (R).



(b) The set of all functions f € C! (R) such that f (3) is a rational number.

e This is not a subspace. To be a subspace it would have to be closed under scalar multiplication by
any real number. If we take any function f such that f (%) =1, then f lies in the stated subset.
But v2 - f is not in this subset since its value at x = % is /2 f (%) =2-1=+2 ¢ Q.

(c) The set of all f € C! (R) such that f (3) = 0.
e This is a subspace of C! (R). To see this consider an arbitary linear combination af + B¢ of such
functions
(af+8(9) (x) =af (z)+Bg(x)=a-0+5-0=0
Since a linear combination is always in the stated subset of C! (R), the stated subset is a subspace
of C! (R).
(d) The set of all f € C! (R) such that fo z)dr =1

e This is not a subspace, since it is closed nelther under scalar multiplication or vector addition.

Explicitly, if f, g belong to this subset of C! (R) and «, 8 € R, then af + (g satisfies

1
/(af—i—ﬁg m—a/f dm—l—ﬁ/ Jdr=a-148-1#1 in general
0

(e) The set of all f € C! (R) such that fo x)dr =0
e This a subspace. Let f, g belong to this subset of C' (R) and «, B € R, then af + B¢ satisfies

1
/(af+ﬁg)( dx—oz/f dcc—|—5/ z)dr=a-04+3-0#0 always

and so the subset is closed under scalar multiplication and vector addition; hence it is a subspace.
(f) The set of all f € C! (R) such that % =
e This is a subspace of C! (R). Suppose f, g belong to this subset and «, 3 € R. Then

d df B
(35 (@7 +80)) =a + 55 —a 04 5-0=0

and the so the stated subset is closed under scalar multiplication and vector addition; hence it is
a subspace.

4. Prove that a subspace (a subset of a vector space that is closed under scalar mulitiplication and vector
addition) is itself a vector space by verifying all 8 axioms.

e Here it is to be understood that the operations of scalar mulitiplication and vector addition in S
are just the restrictions of the corresponding operations in V. Thus,
+s : SxS=S5 = +4v|g
kg ¢ FxS—=85 = =xy|g
The images of these restrictions is indeed S since S is closed under scalar multiplication and vector
addition. (Here I'm using +yand #y to indicate addition and scalar multiplication of vectors in
V', and distinguishing that, at least notationally, from the addition and scalar multiplication of
vectors in S.)
Verification of the Axioms:
(i) v+tsu=u+gwv
v+su = vty u defn. of addition in S
= u+tyv since V is a vector space
= u+gwv defn. of addition in S
(ii)) (W+su)+sw=v+g (u+gsw)
w+su)+sw = (V4yvu)+yvw defn. of addition in S
= v+y (u+vw) since V' is a vector space
= v+s (utgw) defn. of addition in S



(iii) Existence of Additivity Identity.
Since S is closed under scalar multiplication, if we start with an v € S, Op xg v € S. But

Op s v = Op xy v = Oy
So Oy € S. Moreover, for any vector u € S
Uu+s0y =u+y Oy =u
and so Oy is also an additive identity in S.
(iv) Existence of Additive Inverses
Since S is closed under scalar multiplication, if v € S, so is (—1p *s v). But
v4s (—lp*xsv) = v+y (=lp*yv)
= (Ip*vv)+v (—lp*v)
= (Ir+r (=1p) *v v

= Opx*xyv
- 0y
= 0Og
(v) M) *sv=A(u*gv) forall \,peFandallve S:
A)xsv = (Ap)*yv defn of scalar mult. in S
= Axy (uxyv) since V is a vector space
= Axg (*sv) defn. of scalar mult. in S

(vi) A+ p)*sv=_A*gv)+s (u*xsv) forall \,p e Fandallv e S :

A+p)xsv = (A+p)*yv defn. of scalar mult. in S
= (Axy o) +y (u*yv) since V' is a vector space
= (Axgv)+s (u*s0) defn of scalar mult and vector addition in S

(vil) Axg (v+sw) = (A*gv)+s (A*gw) forall \ € F and all v,w € S :

Axg (V+sw) = Axy (v4y w) defn. of scalar mult. and vector addition in S
= (Axyv)+y (A*y w) since V' is a vector space
= (Axsv)+s (Axgw) defn. of scalar mult. and vector addition in S

(vili) lpxgv=wvforalvesS:
lpxgv = lpxy v defn. of scalar mult. in S

v since V' is a vector space

5. Is the intersection of two subspaces a subspace (prove your answer)?

e Yes. Let W, U be two subspaces of a vector space V. The intersection of W and U is
WNU={veV]jveWandveU}.

Let u,v be any two vectors in WNU , and let «, 5 € F. Consider the linear combination av + Su.
Because, u,v € WNU, in particular, both u and v live in the subspace W. Since W is a subspace,
we have au+ fv € W. On the other hand, both v and v live in U, and so because U is a subspace,
au + Pov lies in U. Thus, au + pov lies in both W and U and so it lies in W N U. Thus, the
intersection of two subspaces is closed under scalar multiplication and vector addition; hence it

too is a subspace.
|

6. Is the union of two subspaces a subspace (explain your answer)?



e No. A single counter-example can justify this claim. Consider the x and y axes of the usual
Cartesian plane R?.

l; = {[z,0] |z € R}
ty = {0,y]lyeR}
Each axis is a 1-dimensional subspace of R2. We have
ly ULy, ={v=1Is,0] or [0,s] | for some s € R}
Then both [1,0] and [0,1] lie in ¢, U ¢,. But
1,00 +1[0,1] =[1,1] ¢ £, UL,

So £, U !, is not a subspace.

7. Show that a set of vectors which contains a linearly dependent set of vectors is itself a linearly dependent
set of vectors.

e Let S ={v1,...,v;} be a linear dependent set of vectors and let T = {v1,..., V%, Vkt1,---,Um}
be another set of vectors containing S. Because S is a linearly dependent set, there must be a
dependence relation

a1 + -+ agug = Oy
with not all ap = Op. But then
a1vy + -+ agvg + Op - vg41 + Op - Vg2 + -+ + Op - vy, = Oy

and because we know at least one of the o; , 1 < ¢ < k, is not equal to Op this provides a
dependence relation for T'. So the set T is a linearly dependent set as well.

8. Let {v1,...,v,} be a basis for a (non-trivial) vector space V. Show that v; # Oy for all i =1,...,n.

e Suppose v; = 0y . Then

Op-v1 +0p-v2+--+0p-vi1 +1g-v; +0p - vig1 +---+0p-v, = Oy+0y+---+0y+1-0py+0y+---
Ov
Since the coefficient of v; on the extreme left is non-zero, this identity furnishes us with a de-
pendence relation for {vy,...,v;,...,v,}. Hence this set of vector is linearly dependent. But the
vectors in a basis must be linearly independent. Thus, {v1,...,v;,...,v,} cannot be a basis.
O
9. Let {v1,...,vx} be a linearly independent set of vectors. Let
U = v+ -+ apvg
w = fiurt+-+ Bruk
Prove that v = w if and only if oy = 8,2 = B4, ..., 01 = 5.

e = Suppose u = w. Then v — w = 0y. But then we have

(*) Ov =u—w= (a1 —By)vr+-+ (ar — By) vk
Now if any of the coefficients «; — 3; on the right are non-zero, then (*) will furnish us with
a dependence relation for the set {vi,...,v;}. But by hypothesis, the vectors {vy,..., v} are

linearly independent — and so we’ll have a contradition unless each «; — 3, = Op. But this just
means we must take o; = 3, for each ¢, 1 <17 < k.
<= Suppose a1 = 1,02 = By,...,a, = [;. Then we have
U = o1v1 + -+ agug
= ,81U1+"'+ﬂkvk
= w

+ Oy



|
10. Show that {1, z, 22, ... ,x”} is a basis for the vector space P,, of polynomials of degree < n. (Hint: just
check that the definition of a basis is satisfied.)

e We need to show that {l,x, 2. .. ,x”} is a linearly independent set of generators for /2. By
definition, every polynomial p = ag + a1x + - - - + ax™ of degree < n is a linear combination of
1,x,...,2"; so

P”L = Span(l)x7"' 7%‘“)

and {1,z,...,2"} is a set of generators for P,. The zero vector in P, is the zero polynomial

0p, =04+0-2+0-22+---+0-2"
Since two polynomials are equal if and only if all their coefficients coincide

ap + a1z + agx® + -+ apx™ = 0p,
requires

ap=0,a,1=0,a,=0, ..., a,=0

Thus, the set{1,z,...,2"} is a linearly independent set of generators for P, and hence a basis for

Pn.



