
LECTURE 2

Systems of First Order ODEs with Constant Coefficients

Okay, now with our review of linear algebra completed, we can begin to solve systems of homogeneous, first

order, differential equations.

Recall that an ordinary differential equation is a differential equation in which there is only one underlying

variable. An ordinary differential equation is linear if it can be written in the form




+ −1 ()

−1
−1

+ · · ·+ 1 ()



+ 0 ()  =  ()

where −1 ()      1 ()  0 () and  () are functions of the underlying variable . A linear first order

differential equation is one of the form

0 +  ()  =  () 

Recall that the general solution of such an equation is given by

 () =
1

 ()

Z
 ()  () +



 ()

where

 () := exp

µZ
 () 

¶

The very easiest case is when the function  () is just a constant − and  () = 0. In the case, we have

0 =  =⇒  =  

There are a couple of ways to generalize this simplest example of a first order ordinary differential equations;

one can consider higher order ordinary linear differental equations, or one can consider linear differential

equations where there is more than one underlying variable (i.e., a first order, linear, partial differential

equation). We will begin this course by considering first order ordinary differential equations in which more

than one unknown function occurs.

Definition 2.1. An × system of first order linear ODEs is a set of  differential equations involving

 unknown functions 1      of the form

1


− 11 ()1 ()− 12 ()2 ()− · · ·− 1 () () = 1 ()

2


− 21 ()1 ()− 22 ()2 ()− · · ·− 2 () () = 2 ()

...




− 1 ()1 ()− 2 ()2 ()− · · ·−  () () =  ()

We say that such a system is homogeneous if each of the functions 1 ()       () is just the constant

function 0. We say that such a systems has constant coefficients if each of the coefficient functions

 (), 1 ≤   ≤ , is a constant function.
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2. SYSTEMS OF FIRST ORDER ODES WITH CONSTANT COEFFICIENTS 2

Alternatively, an ×  homogeneous linear system of first order ODEs is a system of differential equations

of the form

x


= Ax ⇐⇒ 



⎡⎢⎣ 1
...



⎤⎥⎦ =
⎡⎢⎣ 11 · · · 1

...
. . .

...

1 · · · 

⎤⎥⎦
⎡⎢⎣ 1

...



⎤⎥⎦
Example 2.2. Suppose A is a diagonal ×  matrix

 =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0

0 2
. . .

...
...

. . .
. . . 0

0 · · · 0 

⎤⎥⎥⎥⎥⎦
Then the homogeneous linear system

x


= Ax

is easily solved. For the differential equations governing the  unknown functions are completely independent

of each other and easily solved

1


= 11 =⇒ 1 () = 1

1  1 a constant

...




=  =⇒  () = 

   a constant

The general solution is thus

x () =

⎡⎢⎣ 1
1

...




⎤⎥⎦
Remark 2.3. When the coefficient matrix A is diagonal, we say that the system x


= Ax is decoupled.

Let’s now consider the general case of an ×  homogeneous linear system with constant coefficients.

(1)




⎡⎢⎣ 1
...



⎤⎥⎦ =
⎡⎢⎣ 11 · · · 1

...
. . .

...

1 · · · 

⎤⎥⎦
⎡⎢⎣ 1

...



⎤⎥⎦
We will solve such systems by simply making a change of variables so that the differential equations com-

pletely decouple and then solve the corresponding decoupled system as in the preceding example.

Here’s a sketch of how this will work. Suppose we had an invertible matrix C such that

C−1AC = D =

⎡⎢⎢⎢⎣
1 0 · · · 0

0 2 · · · 0
...

. . .
...

0 0 · · · 

⎤⎥⎥⎥⎦
D being a diagonal matrix. Then as above we could simply write down the general solution of ż = Dz as

1 = 1
1

2 = 2
2

...

 = 

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Let z () be such a solution, and consider the vector x () obtained by multiplying z () from the left by the

matrix C

x = Cz

Then

x


=




(Cz) = C




z = Cż = C (Dz)= C

¡
C−1AC

¢
z =

¡
CC−1

¢
ACz = IACz = A (Cz) = Ax

In other words, x = Cz will be a solution of our original differential equation.

ẏ = Ay

Thus, systems of the form (1) can be easily solved if we can find an invertible matrix C such that C−1AC
is a diagonal matrix.

Here is the general procedure: to solve a homogeous linear system of ODEs with constant coefficients

x


= Ax

(i) Compute the eigenvalues and eigenvectors of the coefficient matrix A

(ii) Use the eigenvalues and eigenvectors of A to, respectively, construct the diagonal matrix D and

the change of basis matrix C such that

D = C−1AC ⇐⇒ A = CDC−1

(iii) Write down the general solution of the decoupled system

z


= Dz =⇒ z =

⎡⎢⎣ 1
1

...




⎤⎥⎦
(iv) The solution of the original (coupled) system will be

x = Cz

Example 2.4. Find the general solution of the following system of differential equations

1


= 1 + 2

2


= 41 + 2

The matrix formulation of this problem would be∙
1

2


¸
=

∙
1 1

4 1

¸ ∙
1
2

¸
And so we’ll begin by finding a matrix C that diagonalizes A =

∙
1 1

4 1

¸
FIrst we find the eigenvalues of A

0 = det (A− I) = (1− )
2 − 4 = 1− 2+ 2 − 4 = 2 − 2− 3 = (+ 1) (− 3)

⇒  = −1 3

Next, we find the corresponding eigenvectors
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 = 3 : ∙
0

0

¸
= (A− (3) I)v =

∙
1− (3) 1

4 1− (3)
¸ ∙

1
2

¸
=

∙ −21 + 2
41 − 22

¸
⇒ 21 − 2 = 0 ⇒ 1 = −1

2
2 ⇒ v = 2

∙
1
2

1

¸
≈ 02

∙
1

2

¸
(In the last step, we simply absorbed an ugly factor of 12 into a (redefined) free parameter 02 ≡ 1

2
2.)

 = −1 : ∙
0

0

¸
= (A− (−1) I)v =

∙
1− (−1) 1

4 1− (−1)
¸ ∙

1
2

¸
=

∙
21 + 2
41 + 22

¸
⇒ 21 + 2 = 0 ⇒ 1 = −1

2
2 ⇒ v = 2

∙ −1
2

1

¸
≈ 02

∙
1

−2
¸

Having found the eigenvectors and eigenvalues of A we can now write down the matrices C and D

C =

∙
1 1

2 −2
¸

 D =

∙
3 0

0 −1
¸

The general solution of
z


= Dz

will be

z =

∙
1

3

2
−

¸
And so the general solution of y


= Ay will be

y = Cz =

∙
1 1

2 −2
¸ ∙

1
3

2
−

¸
=:

∙
1

3 + 2
−

21
3 − 22−

¸
= 1

3

∙
1

2

¸
+ 2

−
∙
1

−2
¸

Analysis of Solutions: Above we expressed the general solution of∙
1

2


¸
=

∙
1 4

1 1

¸ ∙
1
2

¸
in terms of two linearly independent solutions

x1 () = 3
∙
1

2

¸
x2 () = −

∙
1

−2
¸

Notice in either case the “trajectories” x () of a solution are just simple half lines (they’re just scalar

multiples of constant vectors).

A more general trajectory will curve about in the (1 2)-plane. To get in idea of what these other solutions

should look like, it is convenient to plot the direction field associated with the system.

Here’s how that works. If
x


= Ax

is our system of ODEs, with A a constant matrix, then knowing that a solution passes through a given x

means we know the tangent vector to the solution curve at that point - because all we have to do is evaluate

the right hand side of (*) at x (that is, carry out the matrix multiplication Ax).
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So pick a grid of points {x1    x} in the (1 2)-plane, construct a table
x1 Ax1
x2 Ax2
...

...

x Ax

and then plot each of the points x1    x and then attach to each of these points a small arrow in the

direction of, respectively, Ax1    Ax. You will get something looking like this:

The figure above is actually the direction field plot for differential equation in Example 2.4.

1. Fundamental Matrix

As in the preceding example, we can always express the general solution of an ×  linear system




x = Ax

as a linear combination of fundamental solutions

(*) x () = 1x
(1) () + 2x

(2) () + · · · x(2) ()
where the vector-valued functions x() () are linearly independent vector-valued functions of . Here linearly

independent is just the usual notion

0 = 1x
(1) () + 2x

(2) () + · · · x(2) () =⇒ 1 = 0, 2 = 0, ... ,  = 0
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which amounts the condition that

0 6= det

⎡⎢⎢⎢⎢⎣

(1)
1 () 

(2)
1 () · · · 

()
1 ()


(1)
2 () 

(2)
2 () · · · 

()
2 ()

...
...

. . .
. . .


(1)
 () 

(2)
 () · · · 

()
 ()

⎤⎥⎥⎥⎥⎦ ∀ 

Another way of presenting the general solution is in terms of a fundamental matrix Φ. This done by

arranging the  linearly independent vector solutions as the colums of a matrix

Φ () =

⎡⎣ | | |
x(1) () x(2) () · · · x() ()

| | |

⎤⎦
and then representing the general solution as the matrix product of Φ () with an arbitary -dimensional

constant column vectors

x () = Φ () c =

⎡⎣ | | |
x(1) () x(2) () · · · x() ()

| | |

⎤⎦
⎡⎢⎣ 1

...



⎤⎥⎦
Of course it is a familar identity of matrix multiplication that⎡⎣ | | |

x(1) () x(2) () · · · x() ()

| | |

⎤⎦
⎡⎢⎣ 1

...



⎤⎥⎦ = 1x
(1) () + 2x

(2) () + · · · x(2) ()

so writing x () = Φ () c is essentially the same thing as (*). However, it is sometimes to useful to think

of Φ () as a time dependent matrix which transports a constant vector c corresponding to certain initial

vector to its position at time .

2. Complex Eigenvalues

Consider now the system

x


=

∙ −1
2

1

−1 −1
2

¸
x

We have

det

∙ −1
2
−  1

−1 −1
2
− 

¸
= 2 + +

5

4

and so the roots of the characteristic polynomial are

 =
−1±

q
(1)

2 − 4 (1) (54)
2 (1)

=
−1±√−4

2
= −1

2
+   −1

2
− 

The corresponding eigenvectors are:

 = −1
2
+  ∙ −1

2
− ¡−1

2
+ 
¢

1

−1 −1
2
− ¡−1

2
+ 
¢ ¸ = ∙ − 1

−1 −
¸
→
∙
1 

0 0

¸
=⇒ v=− 1

2
+ =

∙
1



¸
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2
− ¡−1

2
− 
¢

1

−1 −1
2
− ¡−1

2
− 
¢ ¸ = ∙  1

−1 

¸
→
∙
1 −
0 0

¸
=⇒ v=− 1

2
+ =

∙
1

−
¸

So we’ll have

x =

∙
1 1

 −
¸"

1
(− 1

2
+)

2
(− 1

2
−)

#
= 1

(− 1
2
+)

∙
1



¸
+ 2

(− 1
2
−)

∙
1

−
¸

This is a correct formula for the general solution; however, the answer is given in terms of a pair of complex

vectors mulipliplied by a pair of complex exponential functions. Often what one really wants is a pair of

independent real vector solutions. Here’s how to get such a pair.

We have, by the Euler formula,

(−
1
2
±) = −

1
2
 (cos ()± sin ())

and so ∙
1 1

 −
¸"

1
(− 1

2
+)

2
(− 1

2
−)

#
=

"
1
(− 1

2
+) + 2

(− 1
2
−)

1
(− 1

2
+) − 2

(− 1
2
−)

#

= −
1
2


∙
(1 + 2) cos () +  (1 − 2) sin ()

 (1 − 2) cos ()− (1 + 2) sin ()

¸
So if we take 1 = 2 =

1
2
we get one totally real solution

x(1) () = −
1



∙
cos ()

− sin ()
¸

and if we take 1 = −2 = −2 , we get a separate totally real solution

x(2) () = −
1
2


∙
sin ()

cos ()

¸

The trajectories of both these solutions are spirials

By the way, the direction field plot for the original system is



3. NON-DIAGONALIZABLE SYSTEMS 8

Let me now describe a bit more generally, how we handle the situation where the entries of A are real but

the eigenvalues are complex  =  ± . Now what happens in this situation is that not only are the two

eigenvalues complex conjugates of one another, but also the corresponding eigenvectors (can be normalized

so that they) are complex conjugates of each other. Thus, the general solution can be written (in a 2× 2
case) as

x () =

µ
(+)1 (−)1
(+)2 (−)2

¶µ
1
2

¶
=

µ
11

(+) + 12
(−)

21
(+) + 22

(−)

¶
= 

µ
11

 + 12
−

21
 + 22

−

¶
Let if we choose 1 = 2 =

1
2
we have, as one solution

x () = 

⎛⎝ 1
2

³
1

 + 1
´

1
2

³
2

 + 2
´ ⎞⎠ =

µ
Re

¡
1


¢

Re
¡
2


¢ ¶ = Re³(+)´

and if we choose 1 = −2 = 
2
, we similarly obtain a second independent solution

x2 () =

µ
 Im

¡
1


¢

 Im
¡
2


¢ ¶ = Im³(+)´

The general solution can then be expresses as a linear combination of these two purely real-valued solutions.

3. Non-diagonalizable Systems

Consider now the system





∙
1
2

¸
=

∙
1 −1
1 3

¸ ∙
1
2

¸
In this case, we have

det (A− I) = det

∙
1−  −1
1 3− 

¸
= 2 − 4+ 3 + 1 = (− 2)2

We thus have a single eigenvalue

 = 2
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The corresponding eigenspace is



µ∙
1− 2 −1
1 3− 2

¸¶
= 

µ∙ −1 −1
1 1

¸¶
= 

µ∙
1 1

0 0

¸¶
= 

µ∙
1

−1
¸¶

So we have only one eigenvector.

v=2 =

∙
1

−1
¸

The corresponding fundamental solution will be

(2) x () = 2
∙
1

−1
¸

There are other solutions though. As an ansatz for a second solution consider

x () = 2 + 2

where

 =

∙
1

−1
¸

and  is some vector to be determined. Plugging this x () into the differential equation yields

2 + 22 + 22 =
x


= A

¡
2 + 2

¢
= 22 + 2A

where on the right we used A= 2. Cancelling the 22 terms on both sides and then dividing by 2

yields

 + 2 = A

or

(3) (A− 2I)  = 

On the other hand, working backwards from (3) we see that if  satisfies

(A− 2I)  = 

then

(4) x () = 2 + 2

will be a solution of
x


= Ax ()

The solution of (3) can be easily found using row reduction:

[A− 2I | ] =
∙
1− 2 −1 1

1 3− 2 −1
¸
=

∙ −1 −1 1

1 1 −1
¸
=

∙
1 1 −1
0 0 0

¸
=⇒

½
1 + 2 = −1

0 = 0

=⇒  =

∙
1

−1− 1

¸
=

∙
0

−1
¸
+ 1

∙
1

−1
¸
=

∙
0

1

¸
+ 1

where 1 is arbitrary.

If we now plug this  into (4) we get

x(2) () = 2 + 2
µ∙

0

1

¸
+ 1

¶
Notice that the last term

1
2
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is just a constant multiple of our original solution (2)

x(1) () = 2

So we can drop the 1
2 when we write the general solution

x


= Ax ()

as a linear combination of x(1) () and x(2) (). We thus arrive at

x


= Ax () =⇒ x () = (1 + 2) 

2

∙
1

−1
¸
+ 2

∙
0

1

¸

Let me know both summarize and generalize the method of solving of systems of the form

(5)
x


= Ax ()  with A non-diagonalizable.

First let me summarize the case of a simple 2× 2 system
(*)




x () = Ax ()

where A is a constant matrix with a single eigenvalue  and only one linearly independent eigenvector .

One independent solution will be

x1 () = 

and second linear indepedent solution can be constructed as follows. Let  be the solution of

A = 

then

x2 () =  + 

will be a second independent solution and the general solution of (*) will be

x () = 1
 + 2

¡
 + 

¢
More generally, for an ×  system, the procedure goes as follows.

• Find the eigenvectors and eigenvalues of A.
• Because A is assumed to be non-diagonalizable, there is going to be an eigenvalue  of A that

occurs with multiplicity  (meaning the characteristic polynomial det (A− I) has a factor of the

form (− )

), but for which there are not  linearly independent eigenvectors.

• There will, however, be one eigenvector of A with eigenvalue . Call it (1). It will be the solution

of (A− I)  = 0.

• Once you find (1) successively solve

(A− I) () = (−1)

This will furnish you with a set of generalized eigenvectors corresponding the eigenvalue .

• The solutions of (5) corresponding the eigenvalue  =  will be of the form

x() () =
1

!
(1) +

1

( − 1)! 
−1(2) + · · ·+ ()   = 1 2     

4. Stability of Solutions

We’ll now look of the behavior of solutions of 2× 2 systems of the form
(6)

x


= Ax

as  → ±∞. We’ll do this via a case-by-case analysis of the various possibilities corresponding to the
eigenvalues and eigenvectors of A:
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4.1. Case 1: A has two distinct real eigenvalues 1 2. In such cases the general solution of (6)

will be of the form

x () = 1
1 + 2

2

with  and  two linearly independent vectors.

4.1.1. 1  r2  0. In this case the first part of the solution will dominate as  → +∞, while the
second term will dominate as → −∞. But note that as → −∞, x ()→ 0 because both terms are being

multiplied by exponential functions that rapidly decay as  → −∞. So the solutions will asymptotically
approach the line R as → +∞ and asymptotically approach the line R as → −∞.

4.1.2. 1  0  r2. In this case the first part of the solution will dominate as → +∞, while the second
term will dominate as → −∞. But note that as → −∞, x () will not be zero, rather as → −∞, x ()
will head off to infinity (that is, to say kx ()k→∞) in the direction of .

4.2. Case 2: A has two complex eigenvalues  = ± . This case is typified by systems where

(6) takes the form

(7)
x


=

µ
 

− 

¶
x ⇐⇒

½
1

= 1 + 2

2

= −1 + 2

If we replace the components 1 ()  2 () of x () with their expressions in terms of polar coordinates

1 () =  () cos ( ())

2 () =  () sin ( ())

we then have




cos ()−  sin ()




=

1


= 1 + 2 =  cos () +  sin ()(8a)




sin () +  cos ()




=

2


= −1 + 2 = − cos () +  sin ()(8b)

Multiplying equation (8a), equation by cos (), (8b) by sin () and then adding the results we get¡
cos2  + sin2 

¢ 

= 

¡
cos2  + sin2 

¢
or




=  =⇒  = 0



On the other hand, multiplying equation (8a) by − sin (), (8b) by cos () and then adding results yields


¡
sin2  + cos2 

¢ 

= − ¡sin2  + cos2 ¢

or




= − =⇒  () = −+ 0

Thus the general solution of (7) can be written

1 () = 0
 cos (−+ 0)

2 () = 0
 sin (−+ 0)

The trajectories of such solution will be spirals that decay or expand away from the origin 0.
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4.3. Case 3: A has a single eigenvalue r and a single eigenvector . This case is typified by

the a matrix of the form

A =

µ
 

0 

¶
The general solution of

x


= Ax

will be

x () = 1


∙
1

0

¸
+ 2

µ


∙
1

0

¸
+ 

∙
0

1

¸¶
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5. Non-Autonomous Homogeneous Linear Systems

We have been considering systems of first order ordinary differential equations that can be cast in the form

(*)



x () = Ax ()

In the examples treated thus far the matrix A has been a constant matrix (independent of ). In such case,

when the underlying variable does not appear explictly in the system of differential equations, the system

is said to be autonomous. The system *() is special in another way: there are no terms in a system of

linear differential equation that are independent of x () and its derivatives: such a system is said to be

homogeneous. In the next lecture we shall consider non-autonomous, non-homogeneous linear systems;

that is, to say systems of the general form




x () = A ()x () + b ()

However, we have already in hand the necessary techniques to solve a non-autonomous, homogeneous system




x () = A ()x () 

Example. Consider the linear system

1


= (+ 1)1 + (− 1)2

2


= (− 1)1 + (+ 1)2

The relevant matrix is

A =

∙
+ 1 − 1
− 1 + 1

¸
We determine its eigenvalues as before:

0 = det (A− I) = det

∙
+ 1−  − 1
− 1 + 1− 

¸
= 2 − 2 (+ 1)+ 4

⇒  =

2 (+ 1)±
r³

4 (+ 1)
2 − 8

´
2

⇒  = (+ 1)±
q
(+ 1)

2 − 4
⇒  = (+ 1)±

p
2 − 2+ 1

⇒  = (+ 1)±
q
(− 1)2

⇒  = 2 2

So we have two eigenvalues, − 2 and 2. We can also calculate the corresponding eigenvectors they turn
out to be

v=2 =

∙
1

−1
¸

v=2 =

∙
1

1

¸
Thus, the matrix

C =

∙
1 1

−1 1

¸
will convert the original coupled (non-diagonal) system to a de-coupled (diagonalize) one: as before we have

D = C−1AC =
∙
2 0

0 2

¸
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and so if we define

y () = C−1x ()
then




x = Ax ⇒ C−1




x = C−1Ax

⇒ 



¡
C−1x

¢
= C−1ACC−1x =

¡
C−1AC

¢ ¡
C−1x

¢
⇒ 


y = Dy

The new variables 1 and 2 now are solutions of the decoupled system"
1

2


#
=




y = D ()y =

∙
2 0

0 2

¸ ∙
1
2

¸
=

∙
21
22

¸
or

1


= 21

2


= 22

The next step is the only difference between this non-autonomous example and the previous autonomous

examples. To solve the second differential equation we have to resort to the formula

0 =  ()  ⇒  () =  exp

µZ
 ()

¶


(which also applies to equation for 1). We find

1 () = 1
2

2 () = 2
2

We thus find the solution x () to the original system to be

x () = Cy () =

∙
1 1

−1 1

¸ ∙
1

2

2
2

¸
=

"
1

2 + 2
2

−12 + 2
2

#
Just as in previous examples we can reformulate this result in terms of a fundamental matrix. If we set

Φ () =

⎡⎣ | |
1 ()v1 2 ()v2

| |

⎤⎦
(i.e. the 2 × 2 matrix whose first column is the first solution 1 () corresponding to the first eigenvalue

times the first eigenvector and whose second column is the solution corresponding to the second eigenvalue

times the second eigenvector), then

x () = Φ ()

∙
1‘
2

¸



