LECTURE 4

Numerical Methods for ODEs, 1

I shall now give an easy method of constructing an (approximate) numerical solution to a differential
equation of the form

d

d—f =F(t,x),Vtelab

The beauty of this method is that it works for any first order differential equation (well, so long as the
function F'(z,t) on the right hand side is a continuous function of z and ¢ on the interval [a, b]). However, it
has a rather ugly side as well - the final result will not be a presentation of the solution in terms of known
functions; rather it will simply be a table of values of the solution at a discrete set of points ¢; € [a, b].

(4.1)

To construct our numerical solution, we begin by first dividing up the interval [a, b] into n subintervals. Set

b—a
4.2 At =
(42) —
and let
(43) t() = a
t1 = a+ Az
ta = a+2Ax
ti = a+ilAx
h—
t, = a+nAt=a+ ¢

At=0>
t

Let x; = z (t;) denote the value of a solution of (4.1) at the point ¢; and let &; = ‘fi—f (t;). The differential
equation (4.1) then requires

(44) ZEzzF(tl,SCl) ,z:(),l,,n

bNOW by making At small enough, we can approximate &; = ‘fi—f (t;) to an arbitrarily high degree of accuracy
y setting

_@(t,)Nﬂ_xi+1_$i
At T At At

And so, the differential equation (4.1) is approximately equivalent to the following set of algebraic equations

(4.5) T

(4.6) %;%:F(ti,xi),i:(),...7nfl
Solving (4.6) for x;1, we obtain

or, more explictly,
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(48) T xo + AtF (to, .ZE())

(49) To = I+ AtF (tl, .’El)

(410) X3 x9 + AtF (tg, ZL'Q)

(4.11) :

(4.12) Tit1 = T;+ AtF (ti, .CL‘Z)

(4.13) :

(4 14) Ty = Tp_1+ ALF (tn—h $n_1)
This set of equations relates now relates all the z;, i = 1,2,...,n to zg.

To see this, note that when i = 0 equation (4.8) implies

(4.15)

T

= X9 + F(to,.ﬁl)o)

But now inserting this expression for x; into the right hand side of (4.9) yields

(4.16)

To = X + F (to,l’o) + F(tl,mo + F(t0,$0)>

Thus, x9 is expressed entirely in terms of xy. We now replace the x5 on the rightt hand side of (4.10) with
the expression on the right hand side of (4.16) to express x3 directly in terms of zy. Repeating this process
n — 1 times we can express all the x; in terms of zg.

ExAMPLE 4.1. Construct a numerical solution of the differential equation

dz 9
— =x"t,Vte|0.l1].
ik [0.1]
such that
z(0) = 1.
on the interval [0,1].
Let’s set n = 10, and let
1-0 1
At = —=.—
n 10
to = 0
t1 = to+At=0.1
ty = to+2At=02
tio = to+10At=1
and let x;, i = 0,..., 10 represent the values of x(¢) when ¢t = 0,...,10. Since in this example
F(t,x) = 2°t
equations (4.8) - (4.14) take the form
1 = xg-+ Attomg
To = X1+ Attll‘%
I3 ZTo + Attgl’%
190 = X9+ Attgmg
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Since At = ti = % and o = z(0) = 1, in this example, these equations can also be written as

L
10° 1

xr, = 1
0.1 ,
Ty = x1+ To%1 = 1+ (0.01)(1) =1.01
2
T3 = o+ 1—0335 = (1.01) + (0.02)(1.01) = 1.0302
09,
T = @9+ J5wg = 1712852586

The data given above, of course, is not so useful in getting a feel for our solution z(¢) of the differential
equation. To gain a little more intuition as to what our solution looks like, we can plot the pairs of points
(tiyx;), 1=0,1,...,10 in the tx plane. Such a plot is given below.
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By mentally connecting the dots, we can get an idea of what the graph of our solution looks like.

Alternatively, we can choose our number of sample points n to very large, say n = 100, repeat the calculation
(on a computer) and plot the results. Doing so we get a graph like
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1.8_ o

which is not only far more accurate (in matching the exact solution), but also contains so many data points
that we don’t even have to imagine connecting them to see the graph of z(t).

Below I give a simple Maple routine that automated this calculation:

(1) n:= 100;

(2) %[0 ] = 1 0;

(3) f:=(x,t) -> t*x"2;

(4) dt := (1 0)/n;

(5) for i from 0 to n do t[i] := i*d: od:

(6) for j from 1 to n do x[j] := x[j-1] + dt*f(x[j-1],t[j-1]): od:

In the first line I declare the number of sample points to be 1000.

In the second line I declare the initial value of x to be 1.0

In the third line I declare the function appearing on the right hand side of the differential equation.
In the fourth line I declare the value for interval At between adjacent sample points.

In the fifth line I create values for all the points t; = i *x At.

In the sixth line I recursively apply the difference relation (4.7) to calculate all the x; = x(¢;).

To see a plot of these points you can use the following Maple commands
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(1) with(plots);
(2) pointlist := {seq([t[n],x[n]],n=0..100)}:
(3) pointplot(pointlist);

t



