

## LECTURE 6

# Numerical Methods for ODEs, II

### 1. Runge-Kutta Methods

In Lecture 5, we discussed the Euler method; a fairly simple iterative algorithm for determining the solution of an initial value problem

$$(0) \quad \frac{dx}{dt} = F(t, x) \quad , \quad x(t_0) = x_0 .$$

The key idea was to interpret the  $F(x, t)$  as the slope  $m$  of the best straight line fit to the graph of a solution at the point  $(t, x)$ . Knowing the slope of the solution curve at  $(t_0, x_0)$  we could get to another (approximate) point on the solution curve by following the best straight-line-fit to a point  $(t_1, x_1) = (t_0 + \Delta t, x_0 + m_0 \Delta t)$ , where  $m_0 = F(t_0, x_0)$ . And then we could repeat this process to find a third point  $(t_2, x_2) = (t_1 + \Delta t, x_1 + m_1 \Delta t)$ , and so on. Iterating this process  $n$  times gives us a set of  $n + 1$  values  $x_i = x(t_i)$  for an approximate solution on the interval  $[t_0, t_0 + n\Delta t]$ .

Now recall from our discussion of the numerical procedures for calculating derivatives (Lecture 6) that the formal definition

$$\frac{dx}{dt} = \lim_{h \rightarrow 0} \frac{x(t+h) - x(t)}{h}$$

does not actually provide the most accurate numerical procedure for computing derivatives. For while

$$\frac{dx}{dt} = \frac{x(t+h) - x(t)}{h} + \mathcal{O}(h) \quad ,$$

a more accurate formula would be

$$\frac{dx}{dt} = \frac{4}{3h} (x(t+h/2) - x(t-h/2)) - \frac{1}{6h} (x(t+h) - x(t-h)) + \mathcal{O}(h^4)$$

and even more accurate formulas were possible using Richardson Extrapolations of higher order.

In a similar vein, we shall now seek to improve on the Euler method. Let us begin with the Taylor series for  $x(t+h)$ :

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2}x''(t) + \frac{h^3}{6}x'''(t) + \mathcal{O}(h^4)$$

From the differential equation we have (by differentiating the differential equation and applying the two-variable chain rule)

$$\begin{aligned} \frac{d^2x}{dt^2} &= \frac{d}{dt} \frac{dx}{dt} \\ &= \frac{d}{dt} F(t, x) \\ &= \frac{\partial F}{\partial t}(t, x) \frac{dt}{dt} + \frac{\partial F}{\partial x} \frac{dx}{dt} \\ &= F_t(t, x) + F_x(t, x) F(t, x) \end{aligned}$$

And so the Taylor series for  $x(t+h)$

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2}x''(t) + \mathcal{O}(h^3)$$

can be expressed in terms of  $F(t, x)$  and its derivatives

$$x(t+h) = x(t) + hF(x, t) + \frac{h^2}{2} (F_t(t, x) + F_x(t, x)F(t, x)) + \mathcal{O}(h^3)$$

which after regrouping terms is the same as

$$(2) \quad x(t+h) = x(t) + \frac{1}{2}hF(t, x) + \frac{1}{2}h(F(t, x) + hF_t(t, x) + hF(t, x)F_x(t, h)) + \mathcal{O}(h^3)$$

Now, regarding  $F(t+h, x+hF(t, x))$  as a function of  $h$ , we have the following Taylor expansion

$$(3) \quad F(t+h, x+hF(t, x)) = F(t, x) + hF_t(t, x) + F_x(t, h)(hF(t, h)) + \mathcal{O}(h^2)$$

Now you see the purpose of the regrouping in (2); the tail end of (2) coincides with  $\frac{1}{2}h$  times the right hand side of (3). This allows us to write

$$x(t+h) = x(t) + \frac{h}{2}F(t, x) + \frac{h}{2}F(t+h, x+hF(t, x)) + \mathcal{O}(h^3)$$

or

$$(4) \quad x(t+h) \approx x(t) + \frac{1}{2}(f_1 + f_2)$$

where

$$(5) \quad f_1 \equiv hF(t, x)$$

$$(6) \quad f_2 \equiv hF(t+h, x+f_1)$$

Notice that formulas (4), (5), and (6) allow us to use initial data  $x(t_0) = x_0$ , to compute an approximate value for  $x(t_0 + h)$  in three steps:

- (i) compute  $f_1 = hF(t_0, x_0)$
- (ii) compute  $f_2 = hF(t_0 + h, x + f_1)$
- (iii) compute  $x(t+h) = x_0 + \frac{1}{2}(f_1 + f_2)$

We thus arrive at the following algorithm for computing a solution to the initial value problem (1):

- (1) Partition the solution interval  $[a, b]$  into  $n$  subintervals:

$$\begin{aligned} \Delta t &= \frac{b-a}{n} \\ t_k &= a + k\Delta t \end{aligned}$$

- (2) Set  $x_0$  equal to  $x(a)$  and then for  $k$  from 0 to  $n-1$  calculate

$$\begin{aligned} f_{1,k} &= \Delta t F(t_k, x_k) \\ f_{2,k} &= \Delta t F(t_k + \Delta t, x_k + \Delta t f_{1,k}) \\ x_{k+1} &= x_k + \frac{1}{2}(f_{1,k} + f_{2,k}) \end{aligned}$$

This method is known as **Heun's method** or the **second order Runge-Kutta method** (3) .

Higher order Runge-Kutta methods are also possible; however, they are very tedious to derive. Here is the formula for the **classical fourth-order Runge-Kutta method**:

$$x(t+h) = x(t) + \frac{1}{6}(f_1 + 2f_2 + 2f_3 + f_4)$$

where

$$\begin{aligned} f_1 &= hF(t, x) \\ f_2 &= hF\left(t + \frac{1}{2}h, x + \frac{1}{2}f_1\right) \\ f_3 &= hF\left(t + \frac{1}{2}h, x + \frac{1}{2}f_2\right) \\ f_4 &= hF(t + h, x + f_3) \end{aligned}$$

Below is a Maple program that implements the fourth order Runge-Kutta method to solve

$$(7) \quad \frac{dx}{dt} = -\frac{x^2 + t^2}{2xt} \quad , \quad x(1) = 1$$

on the interval  $[1, 2]$ .

```

F := (x,t) -> - (x^2 +t^2)/(2*x*t) ;
n := 100;
t[0] := 1.0;
x[0] := 1.0;
h := 1.0/n
for i from 0 to n-1 do
  f1 := evalf(h*F(t[i],x[i]));
  f2 := evalf(h*F(t[i]+h/2,x[i]+f1/2));
  f3 := evalf(h*F(t[i] +h/2,x[i]+f2/2));
  f4 := evalf(h*F(t[i]+h,x[i]+f3));
  t[i+1] := t[i] +h;
  x[i+1] := x[i] +(f1 +2*f2+2*f3+f4)/6;
od:
```

The exact solution to (7) is

$$x(t) = \sqrt{\frac{1}{3} \left( \frac{4}{t} - t^3 \right)}$$

## 2. Error Analysis for the Runge-Kutta Method

Recall from the preceding lecture the formula underlying the fourth order Runge-Kutta Method: if  $x(t)$  is a solution to

$$\frac{dx}{dt} = F(t, x)$$

then

$$x(t_0 + h) = x(t_0) + \frac{1}{6} (f_1 + 2f_2 + 2f_3 + f_4) + \mathcal{O}(h^5)$$

where

$$\begin{aligned}f_1 &= hF(t_0, x_0) \\f_2 &= hF\left(t_0 + \frac{1}{2}h, x_0 + \frac{1}{2}f_1\right) \\f_3 &= hF\left(t_0 + \frac{1}{2}h, x_0 + \frac{1}{2}f_2\right) \\f_4 &= hF(t_0 + h, x_0 + f_3)\end{aligned}$$

Thus, the term  $\mathcal{O}(h^5)$  is the “local truncation error”; it corresponds to the error induced for each successive stage of the iterated algorithm; at each stage the difference between the computed value and the actual value will be of the form

$$err = Ch^5$$

for some constant  $C$ . Here  $C$  is a number independent of  $h$ , but dependent on  $t_0$  and the fourth derivative of the exact solution  $\tilde{x}(t)$  at  $t_0$  (the constant factor in the error term corresponding to truncating the Taylor series for  $x(t_0 + h)$  about  $t_0$  at order  $h^4$ ). To estimate  $Ch^5$  we shall assume that the constant  $C$  does not change much as  $t$  varies from  $t_0$  to  $t_0 + h$ .

Let  $u$  be the approximate solution to  $\tilde{x}(t)$  at  $t_0 + h$  obtained by carrying out a one-step fourth order Runge-Kutta approximation:

$$\tilde{x}(t) = u + Ch^5$$

Let  $v$  be the approximate solution to  $\tilde{x}(t)$  at  $t_0 + h$  obtained by carrying out a two-step fourth order Runge-Kutta approximation with step sizes of  $\frac{1}{2}h$

$$\tilde{x}(t) = v + 2C\left(\frac{h}{2}\right)^5$$

Substracting these two equations we obtain

$$0 = u - v + C(1 - 2^{-4})h^5$$

or

$$\text{local truncation error} = Ch^5 = \frac{u - v}{1 - 2^{-4}} \approx u - v$$

In a computer program that uses a Runge-Kutta method, this local truncation error can be easily monitored, by occasionally computing  $|u - v|$  as the program runs through its iterative loop. Indeed, if this error rises above a given threshold, one can readjust the step size  $h$  on the fly to restore a tolerable degree of accuracy. Programs that uses algorithms of this type are known as **adaptive Runge-Kutta methods**.

### 3. Systems of First Order ODEs

It turns out the that the Runge-Kutta method just describes is easily extendable to the situation of a system of first order ODEs. Indeed, consider such a system expressed in matrix notation:

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(t, \mathbf{x}) = \begin{pmatrix} f_1(t, \mathbf{x}) \\ \vdots \\ f_n(t, \mathbf{x}) \end{pmatrix}$$

Then partitioning the interval in question as  $t_0, t_1 = t_0 + h, t_2 = t_0 + 2h, \dots$  and setting

$$\begin{aligned}\mathbf{x}_k &\approx \mathbf{x}(t_k) \\ \mathbf{F}_k &= \mathbf{F}(t_k, \mathbf{x}_k)\end{aligned}$$

and following the derivation of the Runge-Kutta formula above one arrives at the following recursive formula for  $\mathbf{x}_{k+1}$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \left( \frac{h}{6} \right) (\mathbf{f}_{1,k} + 2\mathbf{f}_{2,k} + 2\mathbf{f}_{3,k} + \mathbf{f}_{4,k})$$

where

$$\begin{aligned} \mathbf{f}_{1,k} &= \mathbf{F}(t_k, \mathbf{x}_k) \\ \mathbf{f}_{2,k} &= \mathbf{F}\left(t_k + \frac{h}{2}, \mathbf{x}_k + \frac{h}{2}\mathbf{f}_{1,k}\right) \\ \mathbf{f}_{3,k} &= \mathbf{F}\left(t_k + \frac{h}{2}, \mathbf{x}_k + \frac{h}{2}\mathbf{f}_{2,k}\right) \\ \mathbf{f}_{4,k} &= \mathbf{F}(t_k + h, \mathbf{x}_k + h\mathbf{f}_{3,k}) \end{aligned}$$

#### 4. Multistep Methods

Here we will develop another method for improving the accuracy of numerical solutions of first order ODEs. Like the original Euler method begin with a first order ODE

$$\frac{dx}{dt} = F(t, x)$$

and a systematic partition of the interval upon which we want to know  $x(t)$ :

$$\begin{aligned} t_0 &= t_0 \\ t_1 &= t_0 + \Delta t \\ &\vdots \\ t_n &= t_0 + n\Delta t \end{aligned}$$

Recall the Fundamental Theorem of Calculus

$$x(t_{n+1}) - x(t_n) = \int_{t_n}^{t_{n+1}} \frac{dx}{dt}(t) dt$$

The basic idea behind the Adams method is approximate  $\frac{dx}{dt}(t)$  by a polynomial  $P(t)$ ; which in turn can be easily integrated to yield a formula

$$x(t_{n+1}) = x(t_n) + \int_{t_n}^{t_{n+1}} P(t) dt$$

Suppose, for example, we wish to use a polynomial

$$P_1(t) = At + B$$

of degree 1 to approximate  $\frac{dx}{dt} = F(t, x)$ . We need two conditions on  $P_1$  to fix the coefficients  $A$  and  $B$ . Assuming that previous  $x(t_n)$  and  $x(t_{n-1})$  have already known, we can require

$$\begin{aligned} P_1(t_{n-1}) &= f_{n-1} \equiv (t_{n-1}, x_{n-1}) \\ P_1(t) &= f_n \equiv F(t_n, x_n) \end{aligned}$$

More explicitly, we require

$$\begin{aligned} f_{n-1} &= P_1(t_{n-1}) = At_{n-1} + B \\ f_n &= P_1(t_n) = At_n + B \end{aligned}$$

Solving for  $A$  and  $B$  yields

$$\begin{aligned} A &= \frac{f_n - f_{n-1}}{t_n - t_{n-1}} = \frac{f_n - f_{n-1}}{h} \\ B &= \frac{f_{n-1}t_n - f_n t_{n-1}}{t_n - t_{n-1}} = \frac{f_{n-1}t_n - f_n t_{n-1}}{h} \end{aligned}$$

where  $h = t_n - t_{n-1}$ .

We can now write

$$\begin{aligned}
 x(t_{n+1}) &= x(t_n) + \int_{t_n}^{t_{n+1}} (At + B) dt \\
 &= x(t_n) + \frac{A}{2} (t_{n+1}^2 - t_n^2) + B(t_{n+1} - t_n) \\
 &= x(t_n) + \frac{1}{2} \left( \frac{f_n - f_{n-1}}{h} \right) (t_{n+1} - t_n) (t_{n+1} + t_n) + \left( \frac{f_{n-1}t_n - f_n t_{n-1}}{h} \right) (t_{n+1} - t_n) \\
 &= x(t_n) + \frac{1}{2} (f_n - f_{n-1}) (2t_n + h) + (f_{n-1}t_n - f_n(t_n - h)) \\
 &= x(t_n) + \frac{3}{2}hf_n - \frac{1}{2}hf_{n-1}
 \end{aligned}$$

(note that, in the second to the last line, the terms involving  $t_n$  all cancel).