
LECTURE 6

Numerical Methods for ODEs, II

1. Runge-Kutta Methods

In Lecture 5, we discussed the Euler method; a fairly simple iterative algorithm for determining the solution
of an intial value problem

(0)
dx

dt
= F (t, x) , x(t0) = x0 .

The key idea was to interprete the F (x, t) as the slope m of the best straight line fit to the graph of
a solution at the point (t, x). Knowing the slope of the solution curve at (t0, x0) we could get to an-
other (approximate) point on the solution curve by following the best straight-line-fit to a point (t1, x1) =
(t0 + ∆t, x0 + m0∆t), where m0 = F (t0, x0). And then we could repeat this process to find a third point
(t2, x2) = (t1 + ∆t, x1 + m1∆t), and so on. Iterating this process n times gives us a set of n + 1 values
xi = x (ti) for an approximate solution on the interval [t0, t0 + n∆t].

Now recall from our discussion of the numerical procedures for calculating derivatives (Lecture 6) that the
formal definition

dx

dt
= lim

h→0

x(t + h)− x(t)

h
does not actually provide the most accurate numerical procedure for computing derivatives. For while

dx

dt
=

x(t + h)− x(t)

h
+O(h) ,

a more accurate formula would be

dx

dt
=

4

3h
(x(t + h/2)− x(t− h/2))− 1

6h
(x(t + h)− x(t− h)) +O

(
h4
)

and even more accurate formulas were possible using Richardson Extrapolations of higher order.

In a similar vein, we shall now seek to improve on the Euler method. Let us begin with the Taylor series
for x(t + h):

x(t + h) = x(t) + hx′(t) +
h2

2
x′′(t) +

h3

6
x′′′(t) +O(h4)

From the differential equation we have (by differentiating the differential equation and applying the two-
variable chain rule)

d2x

dt2
=

d

dt

dx

dt

=
d

dt
F (t, x)

=
∂F

∂t
(t, x)

dt

dt
+

∂F

∂x

dx

dt
= Ft (t, x) + Fx (t, x)F (t, x)

And so the Taylor series for x(t + h)

x(t + h) = x(t) + hx′ (t) +
h2

2
x′′ (t) +O(h3)

1

1. RUNGE-KUTTA METHODS 2

can be expressed interms of F (t, x) and its derivatives

x (t + h) = x (t) + hF (x, t) +
h2

2
(Ft (t, x) + Fx (t, x)F (t, x)) +O

(
h3
)

which after regrouping terms is the same as

(2) x (t + h) = x(t) +
1

2
hF (t, x) +

1

2
h (F (t, x) + hFt(t, x) + hF (t, x)Fx(t, h)) +O(h3)

Now, regarding F (t + h, x + hF (t, x)) as a function of h, we have the following Taylor expansion

(3) F (t + h, x + hF (t, x)) = F (t, x) + hFt(t, x) + Fx(t, h) (hF (t, h)) +O(h2)

Now you see the purpose of the regrouping in (2); the tail end of (2) coincides with 1
2h times the right hand

side of (3). This allows us to write

x(t + h) = x(t) +
h

2
F (t, x) +

h

2
F (t + h, x + hF (t, x)) +O

(
h3
)

or

(4) x(t + h) ≈ x(t) +
1

2
(f1 + f2)

where

(5) f1 ≡ hF (t, x)

(6) f2 ≡ hF (t + h, x + f1)

Notice that formulas (4), (5), and (5) allow us to use initial data x (t0) = x0, to compute an approximate
value for x (t0 + h) in three steps:

(i) compute f1 = hF (t0, x0)
(ii) compute f2 = hF (t0 + h, x + f1)

(iii) compute x (t + h) = x0 + 1
2 (f1 + f2)

We thus arrive at the following algorithm for computing a solution to the intial value problem (1):

(1) Partition the solution interval [a, b] into n subintervals:

∆t =
b− a

n
tk = a + k∆t

(2) Set x0 equal to x(a) and then for k from 0 to n− 1 calculate

f1,k = ∆tF (tk, xk)

f2,k = ∆tF (tk + ∆t, xk + ∆tf1,k)

xk+1 = xk +
1

2
(f1,k + f2,k)

This method is known as Heun’s method or the second order Runge-Kutta method
(3) .

Higher order Runge-Kutta methods are also possible; however, they are very tedius to derive. Here is the
formula for the classical fourth-order Runge-Kutta method:

x(t + h) = x(t) +
1

6
(f1 + 2f2 + 2f3 + f4)

2. ERROR ANALYSIS FOR THE RUNGE-KUTTA METHOD 3

where

f1 = hF (t, x)

f2 = hF

(
t +

1

2
h, x +

1

2
f1

)
f3 = hF

(
t +

1

2
h, x +

1

2
f2

)
f4 = hF (t + h, x + f3)

Below is a Maple program that implements the fourth order Runge-Kutta method to solve

(7)
dx

dt
= −x2 + t2

2xt
, x(1) = 1

on the interval [1, 2].

F := (x,t) -> - (x^2 +t^2)/(2*x*t) ;

n := 100;

t[0] := 1.0;

x[0] := 1.0;

h := 1.0/n

for i from 0 to n-1 do

f1 := evalf(h*F(t[i],x[i]));

f2 := evalf(h*F(t[i]+h/2,x[i]+f1/2));

f3 := evalf(h*F(t[i] +h/2,x[i]+f2/2));

f4 := evalf(h*F(t[i]+h,x[i]+f3));

t[i+1] := t[i] +h;

x[i+1] := x[i] +(f1 +2*f2+2*f3+f4)/6;

od:

The exact solution to (7) is

x(t) =

√
1

3

(
4

t
− t3

)

2. Error Analysis for the Runge-Kutta Method

Recall from the preceding lecture the formula underlying the fourth order Runge-Kutta Method: if x(t) is
a solution to

dx

dt
= F (t, x)

then

x(t0 + h) = x(t0) +
1

6
(f1 + 2f2 + 2f3 + f4) +O(h5)

3. SYSTEMS OF FIRST ORDER ODES 4

where

f1 = hF (t0, x0)

f2 = hF

(
t0 +

1

2
h, x0 +

1

2
f1

)
f3 = hF

(
t0 +

1

2
h, x0 +

1

2
f2

)
f4 = hF (t0 + h, x0 + f3)

Thus, the term O
(
h5
)

is the “local truncation error”; it corresponds to the error induced for each successive
stage of the iterated algorithm; at each stage the difference between the computed value and the actual
value will be of the form

err = Ch5

for some constant C. Here C is a number independent of h, but dependent on t0 and the fourth derivative
of the exact solution x̃(t) at t0 (the constant factor in the error term corresponding to truncating the Taylor
series for x(t0 + h) about t0 at order h4. To estimate Ch5 we shall assume that the constant C does not
change much as t varies from t0 to t0 + h.

Let u be the approximate solution to x̃(t) at t0 + h obtained by carrying out a one-step fourth order
Runge-Kutta approximation:

x̃(t) = u + Ch5

Let v be the approximate solution to x̃(t) at t0 + h obtained by carrying out a two-step fourth order
Runge-Kutta approximation with step sizes of 1

2h

x̃(t) = v + 2C

(
h

2

)5

Substracting these two equations we obtain

0 = u− v + C
(
1− 2−4

)
h5

or

local truncation error = Ch5 =
u− v

1− 2−4
≈ u− v

In a computer program that uses a Runge-Kutta method, this local truncation error can be easily monitored,
by occasionally computing |u− v| as the program runs through its iterative loop. Indeed, if this error rises
above a given threshold, one can readjust the step size h on the fly to restore a tolerable degree of accuracy.
Programs that uses algorithms of this type are known as adaptive Runge-Kutta methods.

3. Systems of First Order ODEs

It turns out the that the Runge-Kutta method just describes is easily extendable to the situation of a system
of first order ODEs. Indeed, consider such a system expressed in matrix notation:

dx

dt
= F (t,x) =

 f1 (t,x)
...

fn (t,x)


Then partitioning the interval in question as t0, t1 = t0 + h, t2 = t0 + 2h, . . . and setting

xk ≈ x (tk)

Fk = F (tk,xk)

4. MULTISTEP METHODS 5

and following the derivation of the Runge-Kutta formula above one arrives at the following recursive formula
for xk+1

xk+1 = xk +

(
h

6

)
(f1,k + 2f2,k + 2f3,k + f4,k)

where

f1,k = F (tk,xk)

f2,k = F

(
tk +

h

2
,xk +

h

2
f1,k

)
f3,k = F

(
tk +

h

2
,xk +

h

2
f2,k

)
f4,k = F (tk + h,xk + hf3,k)

4. Multistep Methods

Here we will develop another method for improving the accuracy of numerical solutions of first order ODEs.
Like the original Euler method begin with a first order ODE

dx

dt
= F (t, x)

and a systematic partition of the interval upon which we want to know x (t):

t0 = t0

t1 = t0 + ∆t

...

tn = t0 + n∆t

Recall the Fundamental Theorem of Calculus

x (tn+1)− x (tn) =

∫ tn+1

tn

dx

dt
(t) dt

The basic idea behind the Adams method is approximate dx
dt (t) by a polynomial P (t); which in turn can

be easily integrated to yield a formula

x (tn+1) = x (tn) +

∫ tn+1

tn

P (t) dt

Suppose, for example, we wish to use a polynomial

P1 (t) = At + B

of degree 1 to approximate dx
dt = F (t, x). We need two conditions on P1 to fix he coefficients A and B.

Assuming that previous x (tn) and x (tn−1) have already know, we can require

P1 (tn−1) = fn−1 ≡ (tn−1, xn−1)

P1 (t) = fn ≡ F (tn, xn)

More explicity, we require

fn−1 = P1 (tn−1) = Atn−1 + B

fn = P1 (tn) = Atn + B

Solving for A and B yields

A =
fn − fn−1
tn − tn−1

=
fn − fn−1

h

B =
fn−1tn − fntn−1

tn − tn−1
=

fn−1tn − fntn−1
h

4. MULTISTEP METHODS 6

where h = tn − tn−1.

We can now write

x (tn+1) = x (tn) +

∫ tn+1

tn

(At + B) dt

= x (tn) +
A

2

(
t2n+1 − t2n

)
+ B (tn+1 − tn)

= x (tn) +
1

2

(
fn − fn−1

h

)
(tn+1 − tn) (tn+1 + tn) +

(
fn−1tn − fntn−1

h

)
(tn+1 − tn)

= x (tn) +
1

2
(fn − fn−1) (2tn + h) + (fn−1tn − fn (tn − h))

= x (tn) +
3

2
hfn −

1

2
hfn−1

(note that, in the second to the last line, the terms involving tn all cancel).

