LECTURE 6

Numerical Methods for ODEs, 11

1. Runge-Kutta Methods

In Lecture 5, we discussed the Euler method; a fairly simple iterative algorithm for determining the solution
of an intial value problem

(0) Z—f =F(t,z) , =z(to) =0 .

The key idea was to interprete the F(x,t) as the slope m of the best straight line fit to the graph of
a solution at the point (¢,2). Knowing the slope of the solution curve at (tg,xo) we could get to an-
other (approximate) point on the solution curve by following the best straight-line-fit to a point (¢1,z1) =
(to + At, g + moAt), where mg = F(tg,zp). And then we could repeat this process to find a third point
(ta,m2) = (t1 + At, 21 +my1At), and so on. Iterating this process n times gives us a set of n + 1 values
x; = z (t;) for an approximate solution on the interval [t,tg + nAt].

Now recall from our discussion of the numerical procedures for calculating derivatives (Lecture 6) that the
formal definition () 0
dx .oz(t+h) —a(t
@ h
does not actually provide the most accurate numerical procedure for computing derivatives. For while
de xz(t+h)—xz(t)
—=——"+0(h
a more accurate formula would be
dx 4 1
— = — (x(t+h/2) —x(t —h/2)) — — (x(t+h)—x(t—h ht
= o (lt+ h/2) — alt = h/2) — o (ot +h) — 2t —) + O ()

and even more accurate formulas were possible using Richardson Extrapolations of higher order.

In a similar vein, we shall now seek to improve on the Euler method. Let us begin with the Taylor series

for z(t + h):
2

z(t+h) = z(t) + ha'(t) + %m”(t) + %395”'(75) +O(h*)

From the differential equation we have (by differentiating the differential equation and applying the two-
variable chain rule)

Po _ dds
a2 dt dt

d
= —F
dt ()

_or i oFds

~ ot YT or at

= Fi(t,x)+ F, (t,z) F (t,2)
And so the Taylor series for x(t + h)

z(t+h) = z(t) + ha' (t) + h;m” (t) + O(h?)

1

1. RUNGE-KUTTA METHODS 2

can be expressed interms of F'(t,x) and its derivatives

z(t+h) :J;(t)—&—hF(a:,t)—F%Q(Ft(t,x)—FFm (t,x) F (t,z)) + O (h®)

which after regrouping terms is the same as

(2) x(t+h) =)+ %hF(L x) + %h (F(t,) + hFy(t,x) + hF(t,2)F,(t,h)) + O(h®)
Now, regarding F' (t + h,x + hF(t,z)) as a function of h, we have the following Taylor expansion
(3) F(t+h,x+hF(t,z)) = F(t,2) + hFy(t,2) + Fy(t,h) (hF(t, h)) + O(h?)

Now you see the purpose of the regrouping in (2); the tail end of (2) coincides with %h times the right hand
side of (3). This allows us to write

w(t+h)=az(t) + gF(t, z) + gF (t+h,x+hE(tz)+ O (h*)

or
@ w{t 4+ h) ~ 2() + 5 (i + o)
where

(5) f1 = hF(t,z)

(6) fa=hF(t+h,x+ fi)

Notice that formulas (4), (5), and (5) allow us to use initial data x (t9) = o, to compute an approximate
value for z (top + h) in three steps:

(i) compute fi; = hF (to,xo)
(ii) compute fo = hF (to+ h,x + f1)
(iii) compute z (t + h) = zo + & (f1 + fo)

We thus arrive at the following algorithm for computing a solution to the intial value problem (1):

(1) Partition the solution interval [a, b] into n subintervals:

b_
At = “
n

tr = a—i—kAt

(2) Set zg equal to z(a) and then for &k from 0 to n — 1 calculate

fig = AtF(tg, o)
fg,k = AtF (t}C + At, xp + Athk)
1
Tpr1 = T+ B (fie + for)

This method is known as Heun’s method or the second order Runge-Kutta method

(3) .

Higher order Runge-Kutta methods are also possible; however, they are very tedius to derive. Here is the
formula for the classical fourth-order Runge-Kutta method:

z(t+h)=x(t)+ é (fi+2f2+2fs+ fa)

2. ERROR ANALYSIS FOR THE RUNGE-KUTTA METHOD 3

where
fl = hF(ta J?)

1 1

2
fa = hF({+hz+ f3)

1 1
fs = hF (t—|— 2h,x+f2>

Below is a Maple program that implements the fourth order Runge-Kutta method to solve

dx 2 + 2
7 ar _ _
(7) dt 2zt ’

z(1)=1

on the interval [1,2].

F := (x,t) —> - (x72 +t72)/(2%x*t) ;

n := 100;

t[0] := 1.0;

x[0] := 1.0;

h :=1.0/n

for i from 0 to n-1 do
f1 := evalf (hxF(t[i],x[1]));
2 := evalf (h*F(t[i]l+h/2,x[1]1+£1/2));
£3 := evalf (h*F(t[i] +h/2,x[11+£2/2));
f4 := evalf (h*F(t[i]+h,x[i]+£3));
t[i+1] := t[i] +h;
x[i+1] := x[i] +(f1 +2*%f2+2xf3+f4)/6;

od:

The exact solution to (7) is

2. Error Analysis for the Runge-Kutta Method

Recall from the preceding lecture the formula underlying the fourth order Runge-Kutta Method: if z(t) is
a solution to

dz
> _F
dt (t,2)

then

z(to + h) = x(to) + é (fi+2f2+2fs+ f1) + O(h°)

3. SYSTEMS OF FIRST ORDER ODES 4
where
fl = hF (thxO)

1 1
fo = hF<to+2h,$o+2f1)

2
fa = hF(to+h,z0+ f3)

1 1
f3 = hF<t0+2h,$o+f2>

Thus, the term O (h5) is the “local truncation error”; it corresponds to the error induced for each successive
stage of the iterated algorithm; at each stage the difference between the computed value and the actual
value will be of the form

err = Ch®
for some constant C'. Here C' is a number independent of A, but dependent on ¢y and the fourth derivative
of the exact solution Z(t) at ¢y (the constant factor in the error term corresponding to truncating the Taylor

series for z(to + h) about tq at order h*. To estimate Ch® we shall assume that the constant C' does not
change much as t varies from tg to to + h.

Let u be the approximate solution to Z(t) at tg + h obtained by carrying out a one-step fourth order
Runge-Kutta approximation:

i(t) =u+ Ch®

Let v be the approximate solution to Z(t) at ty + h obtained by carrying out a two-step fourth order
Runge-Kutta approximation with step sizes of %h

i@):v+20<g)5

Substracting these two equations we obtain
O=u—v+C(1-2"%)h°
or

. = u—v
local truncation error = Ch° =

T

In a computer program that uses a Runge-Kutta method, this local truncation error can be easily monitored,
by occasionally computing |u — v| as the program runs through its iterative loop. Indeed, if this error rises
above a given threshold, one can readjust the step size h on the fly to restore a tolerable degree of accuracy.
Programs that uses algorithms of this type are known as adaptive Runge-Kutta methods.

3. Systems of First Order ODEs

It turns out the that the Runge-Kutta method just describes is easily extendable to the situation of a system
of first order ODEs. Indeed, consider such a system expressed in matrix notation:

d fl (t’ X)

X

Z_F(t.x) = :

=P (¥ _

fn (8,%)

Then partitioning the interval in question as tg,t; = tg + h,to = tg + 2h, ... and setting

xp ~ x(tg)
Fk = F(tk,Xk)

4. MULTISTEP METHODS 5

and following the derivation of the Runge-Kutta formula above one arrives at the following recursive formula
for xg41

h
Xpt1 = Xp + (6) (fi + 2f5 1 + 2F3 1 + £41)

where

fir = F(ty,xx)
h h

for, = F (tk + 50Xk + 2f1,k)
h h

f. = F — —f.

3,k (tk + 2,Xk + 5 2,k>

far = F(tp+h,xp+hfsy)

4. Multistep Methods

Here we will develop another method for improving the accuracy of numerical solutions of first order ODEs.

Like the original Euler method begin with a first order ODE
dz

— =F(t

a = Foo

and a systematic partition of the interval upon which we want to know x (¢):
to = to
t = to+ At

t, = to+nAt

Recall the Fundamental Theorem of Calculus

bntt g
z (t, —x(t, :/ — (t)dt
() =2 t) = [50

n

The basic idea behind the Adams method is approximate ‘;—f (t) by a polynomial P (t); which in turn can

be easily integrated to yield a formula

2 (tni) :a:(tn)+/tn+lp(t) dt

n

Suppose, for example, we wish to use a polynomial
P, (t)=At+ B
dz

of degree 1 to approximate %7 = F'(t,z). We need two conditions on P; to fix he coefficients A and B.
Assuming that previous z (¢,) and z (t,—1) have already know, we can require

Py (th—1) = fa-1= ({tn-1,Tn-1)
P (t) = fo=F(tn,zn)
More explicity, we require
fnc1 = Pi(th1) =Aln 1+ B
fn = Pi(t,)=At,+B

Solving for A and B yields
A = fn_fn—l _ fn_fn—l

 tp—ta1 h
fnfltn - fntnfl _ fnfltn - fntnfl

ty —tn—1 h

4. MULTISTEP METHODS
where h = t,, — t,,_1.

We can now write

T(teir) = o)+ j”“ (At + B)dt
= z(tn) + § (1 —) + B (tns1 — tn)
= xz(tn) + % (fn_hf"l> (tng1 — tn) (tns1 +tn) + <f”1t”;f”t”1> (tng1 —tn)
= () + 5 (o = Jam1) G+ 1)+ (et = fo (1 =)
3

1
= z(ta) + §hfn - ihfnfl

(note that, in the second to the last line, the terms involving ¢,, all cancel).

