
LECTURE 7

Numerical Methods for ODEs, III

1. Multistep Methods

We have been developing numerical methods for obtaining solutions to first order ODEs of the form

x′ (t) = F (t, x) .

The numerical methods we have developed thus far (i.e., the Euler method and Runge-Kutta methods) have
been based on Taylor’s formula

x (t + h) = x (t) + x′ (t)h +
1

2!
x′′ (t)h2 +

1

3!
x′′′ (t)h3 + · · ·

In the Euler method one uses the first order approximation

x (t + h) ≈ x (t) + x′ (t)h +O
(
h2
)

to establish the recursive formula

ti = ti−1 + ∆t

xi = xi−1 + F (ti−1, xi−1) ∆t

The Runge-Kutta method uses some tricks that push the error inherent to any Taylor approximation to
higher order in h.

These methods described are referred to as one-step methods because to calculate the value of the
unknown function x at step i the information required to next value of x depends only on the values of
t and x at step i. The multistep methods we shall develop today are algorithms that utilize values at
several preceding steps to determine successive values of the unknown function x.

Since multi-step methods will be allowed to utilize more information than single step methods, it is natural
to expect multi-step methods to be more accurate than single step methods. We won’t quantify this
expectation here, but hopefully the following analogy makes this expectation a bit more convincing. Recall
that we had several methods for computing derivatives numerically using Richardson extrapolations

x′(t) =
x(t + h)− x(t− h)

2h
+O(h2)
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Note how the accuracy of the derivatives increased as we take more and more data points.

1.0.1. Adams-Bashforth Formulae. Suppose we have a differential equation of the form

dx

dt
= F (t, x)

1
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We can use the Fundamental Theorem of Calculus to obtain from this equation an equivalent integral
equation

(1) x(tn+1)− x (tn) =

∫ tn+1

tn

F (t, x(t)) dt

Now of course this doesn’t lead us any closer to an analytic solution, because before we can carry out the
integration on the right hand side, we have to know exactly how x(t) depends on t. However, if we have an
approximate expression for f (t, x(t)), e.g. a polynomial interpolation of f (t, x(t)) then we could arrive at
an approximate value for x(tn+1).

2. Digression: Polynomial Interpolation

Let me give you a simple example of polynomial interpolation. Suppose you knew a function f (x) actually
had to be a polynomial of degree two; i.e., there exist constants a0, a1, a2 such that

(2) f(x) = a0 + a1x + a2x
2 ∀ x

Then you could figure out exactly what polynomial of degree two f (x) is by simply sampling f (x) at three
points: say

f (0) = f0 , f (1) = f1 , f (2) = f2

For the equations

f0 = a0 + 0 + 0

f1 = a0 + a1 + a2

f2 = a0 + 2a1 + 4a2

will furnish you with three independent linear equations for the three unknowns a0, a1, a2. And once you
know a0, a1, a2, you can then compute the value of f (x) at any point x via (2).

Now suppose you know only that f (x) is approximately equal to a polynomial of degree 2 near a point
x0. Then by sampling f (x) at 3 different points close to x0 you could still figure out (as in the preceding
example) an appropriate quadratic polynomial with which to approximate f (x).

More generally, one could sample a function f (x) at n+1 points to obtain enough equations to determine the
coefficients of a polynomial of degree n that approximates f (x). This procedure is known as polynomial
interpolation. (And naturally, the more sampling of f (x) you carry out, the better the polynomial
approximation so obtained.)

However, in practice, solving linear equations to get the coefficients of a polynomial interpolation of f (x)
is not the way to go. Let {x0, x1, . . . , xn} be a set of sampling points, consider the polynomials

`i (x) =
∏
j 6=i

x− xj

xi − xj

These polynomials will have the property that

`i (xj) =

{
1 if i = j
0 if i 6= j

and so the sum

Pf (x) =

n∑
i=0

f (xi) `i (x)

will be a polynomial of degree n such that

Pf (x) = f (x) at each sampling point x0, . . . , xn

By the uniqueness of the interpolation polynomial, Pf (x) is our guy.
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3. Back to Multistep Methods

Suppose then that we know a set of (perhaps approximate) points on the graph of the solution of (1)

(t0, x (t0)) , (t1, x (t1)) , (t2, x2 (t2)) , · · · , (tn, x (tn))

then we also have a corresponding sequence of values of F (t, x)

fi ≡ F (ti, x (ti))

for i = 0, 1, . . . , n. Regarding F (t, x (t)) as a function F̃ (t) of t alone, we could then utilize these (n + 1)

values of F̃ (t) to obtain a polynomial of degree n that approximates F̃ (t).

F (t, x (t))

In fact, we could use the j values fn−j , fn−j+1, . . . , fn to interpolate the function f (t, x(t)) on the interval
[tn−j , tn+1]

f (t, x(t)) ≈ fn−j`n−j(t) + fn−j+1`n−j+1(t) + · · ·+ fn`n(t)

where the `i are the cardinal functions associated with the nodes ti = ih. We can thus write

(3) xn+1 ≈ xn +

∫ tn+h

tn

 n∑
i=n−j

fi`i(t)

 dt = xn +

n∑
i=n−j

cifi

where of course

xi ≡ x (ti)

ci ≡
∫ tn+h

tn

`i(t)dt

The constants ci are independent of f and can be readily (albeit strenuously) calculated. Equations of the
form (3) are known as Adams-Bashforth formulae. In the case where the number j of preceding values
used to determine xn+1 is 4

xn+1 = xn +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3)

and when j = 5 we have

(4) xn+1 = xn +
h

720
[1901fn − 2774fn−1 + 2616fn−2 − 1274fn−3 251fn−4]

3.1. Predictor-Corrector Method. Suppose we approximate the right hand side of (1) by interpo-
lating the integrand f (t, x(t)) at the points {tn−j−2, tn−j−3, . . . , tn+1}. We then arrive at a formula of the
form

xn+1 = xn +

n+1∑
i=n−j−2

Cifi

Formulae of this type are known as Adams-Moulton formulae. For the case where j = 5, an explicit
calculation of the constants

Ci =

∫ tn+1

tn

`i(t)dt

yields the following fifth order Adams-Moulton formula

(5) xn+1 = xn +
h

720
[251fn+1 + 646fn − 264fn−1 + 106fn−2 − 19fn−3]

Note, however, that in order to compute xn+1 we first need to compute

fn+1 = f (tn+1, xn+1)

which depends on xn+1. Clearly, any attempt ot use an Adams-Moulton formula by itself will just cause us
to run around in circles.
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However, if we know j previous values of xi, we can use an jth-order Adams-Bashform formula to obtain an
approximate value for xn+1. We can then use this value to compute fn+1 and then use a jth-order Adams-
Moulton formula to refine our estimate of xn+1. In other words we use an Adams-Bashforth formula like (4)
to predict a value for xn+1 and hence fn+1; and then use an Adams-Moulton formula like (5) to correct
(or at least refine) our approximate value for xn+1. Such a method is known as a predictor-corrector
method.

However, there is still one crucial step missing. In order to use a nth-order Adams-Moulton formula we must
first have the first n values of x so that we can compute f0, f1, . . . , fn. These values are typically obtained
by carrying out an n-step Runge-Kutta approximation to obtain the n data points need to initialize the
Adams-Moulton method.


