
LECTURE 8

Autonomous Systems and Stability

An autonomous system is a system of ordinary differential equations of the form

1


= 1 (1     )

2


= 2 (1     )

...




=  (1     )

or, in vector notation,

x0 = F (x)
That is to say, an autonomous system is a system of ODEs in which the underlying variable  does not

appear explicitly in the defining equations.

For example, homogeneous linear systems of the form

x0 = Ax

where A is a constant matrix are autonomous (with F (x) = Ax).

What’s especially nice about autonomous linear systems is that the associated direction field plots are

independent of , and so one can get a fairly good idea of what the solutions look like by staring the

direction field associated with the vector-valued function F (x).

In this lecture we shall focus on the behavior of solutions near critical points

Definition 8.1. A point x0 is a critical point for an autonomous system

(1) x0 = F (x)

if F (x0) = 0.

The first thing to point out is that if x0 is a critical point of (1) then the constant function

x () = x0

is always a solution of the differential equation: for

0 =
x0


=

x


() = F (x ()) = F (x0) = 0

Definition 8.2. A critical point x0 of an autonomous system is said to be stable if the following condition

holds:

• For any   0, there exists a   0 such that if Φ () is a solution of x0 = F (x) satisfying

kΦ (0)− x0k  

then for all   0, Φ () exists (as a solution) and satisfies

kΦ ()− x0k   

1
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That is, is to say that if x0 is a critical point, then if a solution “starts off close to x0”, then it stays close

to x0 for all positive .
1

A related but distinct concept is that of an asymptotically stable critical point:

Definition 8.3. A critical point x0 of an autonomous system is said to be asymptotically stable if the

following condition holds:

• There exists a 0  0 such that if Φ () is a solution of x
0 = F (x) satisfying

kΦ (0)− x0k  0

then

lim
→∞

Φ () = x0 

Asymptotic stability is a bit stronger than mere stability; because the stability just requires that solutions

that start near a critical point never stray far from that critical point, asymptotic stability, on the other

hand, requires that solutions starting near the critical point x0 have to eventually (well, in the limit  =∞
anyway) settle in at x0.

Here is a simple physical situation that distinguishes between asymptotically stable and stable critical

points. Consider a pendulum.

One possible motion is the pendulum just resting at  = 0. This corresponds to the solution at a critical

point. If you displace the pendulum by a small angle  and then let go, there are two possibilities.

In the frictionless case, the pendulum just rocks back and forth indefinitely between  = − and  = , but

always with | ()− 0| ≤ . In this situation  = 0 is a stable critical point but not an asymptotically stable

critical point (as the pendulum continues to rock back and forth forever).

In the (more realistic) case where there is friction at play, then eventually the rocking motions die down to

the steady rest position. So for a damped pendulum (meaning a pendulum with friction acting)  = 0 is an

asymptotically stable critical point.

Let’s now look at the example of a pendulum a bit more quantitatively. The rotational motion analog of

Newton’s second law is

 = ( ) ( )

1This is the geometric interpretation given in the text; but it’s not quite accurate. What the   test really says is that if

x0 is a critical point, by forcing solutions to pass through a small enough -neighborhood around x0, you can always ensure

that they never stray outside an -neighborhood of x0.
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or
2

2
=

1

2

∙
− sin  − 





¸
Here 2 is the moment of inertia of a mass  displaced from the pivot point by a distance  (the length

of the pendulum string). The term − sin  = r× F (or at least the relevant component on the right
hand side). The term −


represents the force of friction. We can rewrite this equation as

2

2
+ 




+ 2 sin  = 0

where

 =




 =

r




To view this second order differential equation as an autonomous system of first order differential equations

we set

1 = 

2 =




to get

1


= 2

2


= −2 sin (1)− 2

Thus, for this system

F (x) =

∙
2

−2 sin (1)− 2

¸
The critical points are then the solution of F (x) = 0

=⇒
½

2 = 0

−2 sin (1)− 2 = 0
=⇒

½
2 = 0

1 =    ∈ Z
Now 2 = 0 =⇒ 


= 0, meaning at these critical points the pendulum is at rest. The critical

points where 1 = 0±2±4    correspond to the pendulum resting at the bottom of its swing; these are
asymptotically stable critical points (if  6= 0). The critical points where 1 = ±±3±5    correspond
to the pendulum resting at the top of its swing. These are the unstable critical points.

1. Stability of Linear Autonomous Systems

We have already discussed the solutions of autonomous systems of the form

(2) x0 = Ax

Note that so long as A is a nonsingular matrix (i.e. so long as the only solution of Ax = 0 is x = 0), we

will have only one critical point, namely x0 = 0.

When we were examining the solutions of linear systems of the form (2),we found were three basic cases for

2 × 2 systems. We’ll now look at these basic cases again to assess their stability around the critical point
x0 = 0.
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• If A has two real eigenvalues 1 2 and two corresponding eigenvectors 
(1), (2), the general

solution of (2) took the form

x () = 1
1(1) + 2

2(2)

Evidently, such solutions will be stable and asymptotically stable at 0 whenever 1 and 2 are both

negative. If, however, one or both of the eigenvalues are positive then x () will be unstable as

lim
→∞

kx ()k→∞

in these cases.

• If A has a pair of complex conjugate eigenvalues ± = ±1 and a corresponding pair of complex

conjugate eigenvectors vv∗. then the general solution of (2) can be written as

x () = 1
¡
 cos ()−  sin ()

¢
 + 2

¡
 sin () +  cos ()

¢


where

 = Re (v) =
1

2
(v + v∗)

 = Im(v) =
1

2
(v− v∗)

and so solutions will be stable and asymptotically stable if   0, stable if  = 0, and unstable if

  0.

• If A is non-diagonalizable with a single eigenvalue , then the solution of (2) will look like

x () = 1
 + 2

¡
 + 

¢
where  is the eigenvector of A corresponding to the eigenvalue  and  is the solution of

(A− I)  = . Again, it is the exponential factor  that dictates the behavior of solutions

near 0 for positive ; x0 = 0 will be stable and asymptotically stable if  is negative, unstable if 

is postive. When  = 0, the factor of  in the second solution will destabilize the general solution.

Despite the different function form of the solutions x () for these situations, the discussion above, shows

the stability properties of (0 0) can be inferred directly from the eigenvalues of the matrix A. These

characterizations I summarize below:

two real eigenvalues 1 2
eigenvalue property type of critical point stability

1  2  0 node unstable

1  2  0 node stable

1  0  2 saddle point unstable

one real eigenvalues 

eigenvalue property type of critical point stability

  0 proper or improper node unstable

  0 proper or improper node stable

two complex eigenvalues ± 

eigenvalue property type of critical point stability

  0 spiral point unstable

  0 spiral point asymptotically stable

 = 0 center stable
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2. Determination of Trajectories

For two dimensional autonomous systems the trajectories of solutions can sometimes be found by eliminating

the appearance of the underlying variable  from the system of differential equations - via the identity




=








Indeed, if




=  ( )




=  ( )

then  and  are related by the following first order differential equation

(3)



=

 ( )

 ( )

Below we give some examples, we find the trajectories of an autonomous system by solving (3).

Example 8.4. Find the critical points and trajectories of the system




= 6− 3




= −12 + 32

We have

0 = F ( ) =

∙
4− 2
−12 + 32

¸
=⇒

½
4− 2 = 0
−12 + 32 = 0

=⇒
½

 = 2

 = ±2
Thus, the critical points are (2 2) and (−2 2).

Next we have



=




=
−12 + 32
6− 3

or

(*) −32 + 12 + (6− 3) 

= 0

This ODE is separable and so we can solve it likeZ ¡−32 + 12¢ + Z (6− 3)  = 

=⇒ −3 + 12+ 6 − 3
2
2 = 

⇒ 2 − 4 +
µ
2

3
3 − 8+  0

¶
= 0

or

 () =
4±

q
16− 4 ¡¡2

3
3 − 8+  0

¢¢
2

Below is a plot of some of these tranjectories (actually it’s the direction field plot for the ODE (*) above)



3. STABILITY OF LOCALLY LINEAR SYSTEMS 6

8-4.jpg

Note that there appears to be a stable point around (-2,2).

3. Stability of Locally Linear Systems

An autonomous system of ODEs
x


= F (x)

is said to be locally linear around a critical point x0 if the vector function on the right hand side be

expressed as

(2) F (x) = A (x− x0) + g (x)
with

(3) lim
x→x0

kg (x)k
kx− xk = 0

It turns out that the criterion is satisfied automatically, so long as the component functions of F (x) have

continuous partial derivatives up to order two at x0. This because in this situation, the expression (2)

for F (x) can be regarded as the separation of the terms of order ≥ 2 from the linear terms in the Taylor

expansion of F (x) about x0. Indeed, using the Taylor theorem for functions of two variables is how we

will identify the corresponding linearizng approximation to a locally linear system.

Let’s consider a two component system in explicit form




=  ( ) =  (0 0) +




(0 0) (− 0) +




(0 0) ( − 0) +O

³
(− 0)

2
 ( − 0)

2
´




=  ( ) =  (0 0) +




(0 0) (− 0) +

\


(0 0) ( − 0) +O
³
(− 0)

2
 ( − 0)

2
´
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At a critical point,

0 = F (0 0) =

∙
 (0 0)

 (0 0)

¸
⇒  (0 0) = 0 =  (0 0)

So the first terms of the Taylor expansions drop out. If we then set

u () = x ()− x0
Then u () will satisfy

u


=

Ã


(0 0)



(0 0)



(0 0)



(0 0)

!µ
1 ()

2 (4)

¶
+O

³
kuk2

´
Ignoring the O

³
kuk2

´
term, we see can study the behavior of the solutions x () near x0, by analyzing the

solutions of the simple linear system

u


= Au

near u0 = 0. Here, of course, A is the constant matrix

A =

Ã


(0 0)



(0 0)



(0 0)



(0 0)

!

The stability of critical points for a locally linear system and thus be decided by computing the matrix A

from F (x) and examining the eigenvalues of A.

3.1. Example 8.4 done analytically. Recall the nonlinear system of Example 8.4





∙




¸
=

∙
6− 3
−12 + 32

¸
and that this system had critical points at (−2 2) and (2 2). This system is locally linear at both these

critical points because both components of F ( ) are polynomials in  and  (and so have continuous

partial derivatives.

3.1.1. x0 = (2 2). Using the Taylor formula

 ( ) =  (0 0) +  (0 0) (− 0) +  (0 0) (− 0) +O
³
kx− x0k2

´
we have

4− 2 = 0 + 0 (− 2) + (−3) ( − 2) +O
³
kx− x0k2

´
12− 32 = 0 + (12) (− 2) + 0 ( − 2) +O

³
kx− x0k2

´
Taylor expand F ( ) about x0 = (2 2) yields

F ( ) =

∙
0 −3
12 0

¸ ∙
− 2
 − 2

¸
+O

³
kx− x0k2

´
To analyze the nature of solutions in the vicinity of x0 = (2 2) we make a change of variable

 () =  ()− 2
 () =  ()− 2
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and study instead





∙




¸
=





∙
− 2
 − 2

¸
=





∙




¸
≈
∙
0 −3
12 0

¸ ∙
− 2
 − 2

¸
=

∙
0 −3
12 0

¸ ∙




¸
This is a simple linear system, where the coefficient matrix

A =

∙
0 −3
12 0

¸
We have

0 = det (A− I) = 2 + 36 ⇒  = 6

and so we have two pure imaginary eigenvalues. Thus, the linearized system has a stable center at (0 0),

which which is in agreement with our original graphical picture.

3.2. x0 = (−2 2). Let’s now repeat this analysis for the second critical point. In this case, the

linearization of F ( ) is
u


= Au

where

A =

Ã
1


1


2


2


!¯̄̄̄
¯=−2
=2

=

µ
0 −3
6 0

¶¯̄̄̄
=−2
=2

=

µ
0 −3
−12 0

¶
and thus

0 = det (A− I) = 2 − 36 ⇒  = ±6

Since A has a positive eigenvalue, we conclude that the linearization of x () near (−2 2) is unstable, hence
(−2 2) is an unstable critical point for the original linear system. (This conclusion is also in agreement with
our original graphical picture.)


