LECTURE 8

Autonomous Systems and Stability

An autonomous system is a system of ordinary differential equations of the form

d

% :Fl (.’L‘17...7$n)
d

% :F2<.’L‘17...7$n)
dan,

% =F,(x1,...,2)

or, in vector notation,
x' =F (x)

That is to say, an autonomous system is a system of ODEs in which the underlying variable ¢ does not
appear explicitly in the defining equations.

For example, homogeneous linear systems of the form
x' = Ax
where A is a constant matrix are autonomous (with F (x) = Ax).
What’s especially nice about autonomous linear systems is that the associated direction field plots are
independent of ¢, and so one can get a fairly good idea of what the solutions look like by staring the
direction field associated with the vector-valued function F (x).
In this lecture we shall focus on the behavior of solutions near critical points.
DEFINITION 8.1. A point xq is a critical point for an autonomous system
(1) x' =F (x)
if F(xq) =0.

The first thing to point out is that if xq is a critical point of (1) then the constant function

x (t) = %o
is always a solution of the differential equation: for
dxg dx
= - E(t) =F(x(t)) =F(x0) =0

DEFINITION 8.2. A critical point Xy of an autonomous system is said to be stable if the following condition
holds:

e For any € > 0, there exists a § > 0 such that if ® (t) is a solution of x' = F (x) satisfying
@ (0) —xol <0
then for all t > 0, ® (t) exists (as a solution) and satisfies
[®(t) —xoll <e
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That is, is to say that if xq is a critical point, then if a solution “starts off close to x(”, then it stays close
to x¢ for all positive ¢.!

A related but distinct concept is that of an asymptotically stable critical point:

DEFINITION 8.3. A critical point xg of an autonomous system is said to be asymptotically stable if the
following condition holds:

o There exists a g > 0 such that if ® (t) is a solution of x' = F (x) satisfying
[[®(0) — %ol < do

then
lim ® (t) =xg

t—o0o

Asymptotic stability is a bit stronger than mere stability; because the stability just requires that solutions
that start near a critical point never stray far from that critical point, asymptotic stability, on the other
hand, requires that solutions starting near the critical point xo have to eventually (well, in the limit ¢ = oo
anyway) settle in at xg.

Here is a simple physical situation that distinguishes between asymptotically stable and stable critical
points. Consider a pendulum.

One possible motion is the pendulum just resting at & = 0. This corresponds to the solution at a critical
point. If you displace the pendulum by a small angle § and then let go, there are two possibilities.

In the frictionless case, the pendulum just rocks back and forth indefinitely between § = —§ and 6 = 4, but
always with |6 (¢) — 0| < 4. In this situation § = 0 is a stable critical point but not an asymptotically stable
critical point (as the pendulum continues to rock back and forth forever).

In the (more realistic) case where there is friction at play, then eventually the rocking motions die down to
the steady rest position. So for a damped pendulum (meaning a pendulum with friction acting) # = 0 is an
asymptotically stable critical point.

Let’s now look at the example of a pendulum a bit more quantitatively. The rotational motion analog of
Newton’s second law is

torque = (rotational inertia) (angular acceleration)
LThis is the geometric interpretation given in the text; but it’s not quite accurate. What the €, § test really says is that if

Xp is a critical point, by forcing solutions to pass through a small enough §-neighborhood around xg, you can always ensure
that they never stray outside an e-neighborhood of xg.
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or

d*0 1 do

— = —mgLsinf — cL—

a2~ 2 |9 it
Here mL? is the moment of inertia of a mass m displaced from the pivot point by a distance L (the length
of the pendulum string). The term —mgLsin =r x F, (or at least the relevant component on the right

hand side). The term —CL% represents the force of friction. We can rewrite this equation as

d*0 do

E-FWE +w?sinf =0
where
¢
Lays

w=4/2
L

To view this second order differential equation as an autonomous system of first order differential equations
we set

T = 0
do
Ty = —
2T
to get
d:El
=1,
at — °
d
% = —w?sin (z1) — v
Thus, for this system
F(x) = —w?sin (z1) — y2 }

The critical points are then the solution of F (x) = 0

— 5132:0 — 5132:0
—w?sin (1) — vy =0 rw=kr , keZ

Now zo = 0 = % = 0, meaning at these critical points the pendulum is at rest. The critical
points where x1 = 0, £2m, +4m, ... correspond to the pendulum resting at the bottom of its swing; these are

asymptotically stable critical points (if ¢ # 0). The critical points where xy = £+, 43w, +5, ... correspond
to the pendulum resting at the top of its swing. These are the unstable critical points.

1. Stability of Linear Autonomous Systems

We have already discussed the solutions of autonomous systems of the form

(2) x = Ax

Note that so long as A is a nonsingular matrix (i.e. so long as the only solution of Ax = 0 is x = 0), we
will have only one critical point, namely xg = 0.

When we were examining the solutions of linear systems of the form (2),we found were three basic cases for
2 x 2 systems. We’ll now look at these basic cases again to assess their stability around the critical point
Xo = 0.
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e If A has two real eigenvalues 71,75 and two corresponding eigenvectors £, €2 the general
solution of (2) took the form

x(t) = cre"teM 4 cyemate()

Evidently, such solutions will be stable and asymptotically stable at 0 whenever r; and r5 are both
negative. If, however, one or both of the eigenvalues are positive then x (¢) will be unstable as

lim ||x (¢)|| — oo
t—o0

in these cases.
e If A has a pair of complex conjugate eigenvalues A1 = r +iu; and a corresponding pair of complex
conjugate eigenvectors v, v*. then the general solution of (2) can be written as

x (t) = ¢ (" cos (ut) — e sin (ut)) € + co (" sin (ut) + " cos (ut)) n

where

§:Re(v):%(v+v*)

1
p=Tm(v) = o (v v°)
and so solutions will be stable and asymptotically stable if » < 0, stable if » = 0, and unstable if
r > 0.
e If A is non-diagonalizable with a single eigenvalue r, then the solution of (2) will look like

x(t) = cre"™¢ + o (tertf + e”r])

where ¢ is the eigenvector of A corresponding to the eigenvalue r and 7 is the solution of
(A —rI)n = £ Again, it is the exponential factor e that dictates the behavior of solutions
near 0 for positive t; xg = 0 will be stable and asymptotically stable if r is negative, unstable if r
is postive. When r = 0, the factor of ¢ in the second solution will destabilize the general solution.

Despite the different function form of the solutions x (t) for these situations, the discussion above, shows
the stability properties of (0,0) can be inferred directly from the eigenvalues of the matrix A. These
characterizations I summarize below:

two real eigenvalues 71,73
eigenvalue property type of critical point stability

ry>1r9 >0 node unstable
re<re <0 node stable
r < 0<ry saddle point unstable

one real eigenvalues r

eigenvalue property type of critical point stability
r>0 proper or improper node unstable
r <0 proper or improper node stable

two complex eigenvalues a + i3
eigenvalue property type of critical point stability
a>0 spiral point unstable
a<0 spiral point asymptotically stable
a=20 center stable
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t

2. Determination of Trajectories

For two dimensional autonomous systems the trajectories of solutions can sometimes be found by eliminating
the appearance of the underlying variable ¢ from the system of differential equations - via the identity

dy _ 3t
T dx
dx &
Indeed, if
dx
> _F
o (2,9)
dy
2 _a
i (z,y)
then z and y are related by the following first order differential equation
dy _G(z,y)
3) 2 _ ol
dz  F(z,y)

Below we give some examples, we find the trajectories of an autonomous system by solving (3).

ExXAMPLE 8.4. Find the critical points and trajectories of the system
dx

i 6 — 3y
% = —12 4 32?
We have
0=F(z,y) = { _112_—&—2;)%2 } — { —fQ_—I—ngjiO
= { xy:::EQ

Thus, the critical points are (2,2) and (—2,2).

Next we have
dy dy/dt  —12+ 3a?

dr  dz/dt  6—3y

or

dy
* —322 412 - = =
(*) 3x®+ 12+ (6 3y)dw 0

This ODE is separable and so we can solve it like

[ a2y [6-may=c

) 3
= fx3+12x+6yf§y2:C
2
= y2—4y+<§x3—8x+0'> =0

or

44 ,/16 — 4 ((32% — 8z + C
Sty <<2 )

Below is a plot of some of these tranjectories (actually it’s the direction field plot for the ODE (*) above)
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Note that there appears to be a stable point around (-2,2).

3. Stability of Locally Linear Systems

An autonomous system of ODEs

dx
Z_F
o (%)

is said to be locally linear around a critical point xq if the vector function on the right hand side be
expressed as

(2) F(x)=A(x—x) +g(x)
with

5 gl

x—xo [[x =%

It turns out that the criterion is satisfied automatically, so long as the component functions of F (x) have
continuous partial derivatives up to order two at xo. This because in this situation, the expression (2)
for F (x) can be regarded as the separation of the terms of order > 2 from the linear terms in the Taylor
expansion of F (x) about x¢. Indeed, using the Taylor theorem for functions of two variables is how we
will identify the corresponding linearizng approximation to a locally linear system.

Let’s consider a two component system in explicit form

T = F @) = F (zo,90) + 5 (an,ao) (@ = 20) + G (20,30) (0 = 0) + O (0 = a0)” (0~ )

=G lo) = G an.0) + o (20,30 (2= 50) + 5 (z0,30) (0 = 10) + O (2 = )" (y = wo)?)
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At a critical point,

OZF(%,?/O) = [ ggg:zg; } = F(l”oyyo) ZOZG(CCOJIO)

So the first terms of the Taylor expansions drop out. If we then set
u(t) =x(t) —xo

Then u (t) will satisfy

&9

d_u _ 9E (20,10) Ba—F (w0, 90) uy (%) (9( 2)
dt ( 3z (0, 90) % (0, o) ) ( uz (4) > Ol
Ignoring the O (Hu||2) term, we see can study the behavior of the solutions x (¢) near xg, by analyzing the
solutions of the simple linear system
du
dt

near ug = 0. Here, of course, A is the constant matrix

_ (z0,y0) %—F(xoayo)
A= < a2 (%0, %0) % (0, Y0)

= Au

QO

ot

The stability of critical points for a locally linear system and thus be decided by computing the matrix A
from F (x) and examining the eigenvalues of A.

3.1. Example 8.4 done analytically. Recall the nonlinear system of Example 8.4

diaz|_ 6 — 3y

|y | | —1243a?
and that this system had critical points at (—2,2) and (2,2). This system is locally linear at both these
critical points because both components of F (x,y) are polynomials in z and y (and so have continuous

partial derivatives.
3.1.1. x¢ = (2,2). Using the Taylor formula
f(@,y) = f(z0,90) + fo (x0,90) (x — o) + fy (x0,50) (z — yo) + O (||X - XOHQ)
we have
4-2=0+0(—2)+(-3)(y—2) + O (Jx—xol|’)
12 — 322 :O+(12)(x—2)+0(y—2)+0(HX—X0||2)

Taylor expand F (z,y) about x¢ = (2,2) yields

Fea=| 3 o || 275 [+o (k)

To analyze the nature of solutions in the vicinity of xg = (2,2) we make a change of variable
w(t)=x(t)—2
v(t)=y(t)—2
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and study instead

10 =3
112 0
This is a simple linear system, where the coefficient matrix

0 -3
A:{m 0]

O=det(A—-AX)=)\*+36 = \=6i

We have

and so we have two pure imaginary eigenvalues. Thus, the linearized system has a stable center at (0,0),

which which is in agreement with our original graphical picture.

3.2. xg = (—2,2). Let’s now repeat this analysis for the second critical point.

linearization of F (xz,y) is

—— A
ar ~ oY

where

oF,  0F 0 -3

_ ox _ _
A=\ on of _<6x 0);6_2_(
oz y z=—2 =2
y:

and thus

O=det(A-X)=X>—-36 = \=26

In this case, the

Since A has a positive eigenvalue, we conclude that the linearization of x (¢) near (—2,2) is unstable, hence
(—2,2) is an unstable critical point for the original linear system. (This conclusion is also in agreement with

our original graphical picture.)



