
LECTURE 9

Interacting Species

Having spent several lectures on solving linear systems of ODEs, it’s about time we discussed a prototypical

situation in which they arise.

The situations we shall now try to model will involve multiple species - which will be either competing for

the same food supply or in a predator-prey relationship.

1. Single Species

Let’s begin by modeling a single species in isolation. We wish to obtain a function that describes the

population  of a species as a function of time. The simplest model would be to simply say that the

growth rate of a species should be proportional to the size of the populations. A little more explicitly, in

the situation where the birth and death rates of the species are constants (respectively,  and ), then

(1)



= ( − ) =⇒  = 0

(−)

This simple model obviously only allows for only exponential growth or extinction.

A slightly more realistic model would include a term that would slow the rate of growth until it reached a

certain size (perhaps corresponding to a saturation of the available food supply). So we might try adding

a term to the right hand side of (1) that is positive when  is small, decreasing as  grows, and eventually

negative when  gets too large. The simplest kind of term with these properties would be a term of the

form

(−  )

with  and  positive. Thus, we are lead to an ODE of the form

(2)



= (−  )    0

The constant  can be thought of as accounting for  growth rate and the constant  as somehow

reflecting the effect of the population size has its the food supply.

In fact, notice that when

−  = 0

the rate of population growth will be zero. Thus,

 = 

is a critical point for the ODE. In fact, it is a stable and asymptotical stable critcal point. To see this,

let’s examine the linearization of  () about .

If we set

 () =  ()− 


⇒  () =  () +




then




=

µ
− 

µ
+





¶¶µ
+





¶
= −

µ
+





¶
= −− 2

1
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Note that for small 



≈ −

which implies  () = 0 is a stable and asymptotically stable node, which implies  () = 

is a stable and

asysympotically stable critical point. .

corresponds to a steady state population. Let us denote this steady state population by . Then in terms

of the intrinsic growth rate  and the steady state population 

 =



=⇒  =





we have



=

µ
− 




¶
 = 

µ
1− 



¶


Let’s go ahead and solve and see if its solution matches our intuition. Equation (2) is separable, and so we

can determine its general solution as follows




=  (1− ) =⇒ 1

(1− )




= 

=⇒
Z

1

(1− )
 =

Z
+ 

=⇒ − ln ( −  ) + ln := + 

=⇒ ln (( −  )) =  (+ )

=⇒ 

 − 
= (+) = 

=⇒ 

1− () = 

: The constant  can be chosen so that when  = 0 the population is 0.

 = 0 =
 (0)

1−  (0) 
=

0

1− 0

Incorporating this initial condition we now have



1− 
=

0

1− 0


or

 =
0 (1− )

1− 0


or



µ
1 +

0

1− 0

¶
=

0

(1− 0)


or


¡
1− 0 + 0


¢
= 0



or

 () =
0



1− 0 + 0

To make this result a bit more understandable, let

 () =
 ()



be the ratio of the population size at time  to the steady state population, and let 0 := 0 be the

initial ratio. We have

 () =
0



1− 0 + 0
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Plotting  () as a function of  gives us a picture of the possible scenarios (by varying 0).

2. Competing Species

Let us now consider a situation where there are two species competing for the same food supply. Let  ()

and  () denote the populations of species 1 and 2 at time . In the absence of competition, we would

expect these functions to be governed by differential equations of the form




=  (1 − 1)




=  (2 − 2)

The competition between the specifies is to be reflected as a negative contribution to the growth rate of one

species that is proportional to to population of the other species. Thus, we consider systems of the form




=  (1 − 1− 1)

2


=  (2 − 2 − 2)

To get some idea of what can happen let’s look at a particular example:

2.1. Example 1:




=  (1− − )




=  (34−  − 2)
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The critical points for this system occur when

0 =  (1− − )

0 =  (34−  − 2)

or

 = 0   = 0

 = 0   = 34

 = 1   = 0

 = 12   = 12

This seems easy enough to understand: there a basically four different possibilities for the evolution of these

species, depending on the initial state.

(i) If neither species is present at  = 0, then they both stay dead (the solution x () = (0 0)).

(ii) If one species is not present at  = 0 (that is, we start off on one of the coordinate axes), then the

other species grows (or shrinks) to its stable population (corresponding to the constant accompa-

nying the quadratic term 2 in its differential equation).

(iii) If both species are present at  = 0, then the two populations will eventually evolve to the stable

critical point (05 0 5)

However, a closer analysis will reveal some troubles with this interpretation. For starts, consider the plot

of the direction field for this system

Note that the critical points at (0 0), (10) and (0 34) do not look at all like nodes.
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2.2. Behavior near critical points. As plot above shows, a computer generated direction field plot

doesn’t necessarily make it clear whether a critical point is stable, asympotically stable or unstable. To get

a much clearer idea as to what is going on near a critical point, a good strategy is to “linearize” the system

near the critical point, and infer from the behavior of the resulting linear system the stability properties of

a critical point.

Here’s how this works. Suppose c is a critical point of an autonomous system

x0 = F (x)

Taylor expanding the vector valued function F about the critical point we get

x0 = F (c) +

⎛⎜⎜⎝
1
1

¯̄̄
c
· · · 1



¯̄̄
c· · ·


1

¯̄̄
c
· · · 



¯̄̄
c

⎞⎟⎟⎠
⎡⎢⎣ 1 − 1

...

 − 

⎤⎥⎦+ higher order terms
Now the leading term F (c) = 0 since c is a critical point. Changing variables that that x = c corresponds

to the origin;

y = x− c
we get

y0 =



(x− c) = 


x = 0+

⎛⎜⎜⎝
1
1

¯̄̄
c
· · · 1



¯̄̄
c· · ·


1

¯̄̄
c
· · · 



¯̄̄
c

⎞⎟⎟⎠
⎡⎢⎣ 1 − 1

...

 − 

⎤⎥⎦+ 

=

⎛⎜⎜⎝
1
1

¯̄̄
c
· · · 1



¯̄̄
c· · ·


1

¯̄̄
c
· · · 



¯̄̄
c

⎞⎟⎟⎠y
−→ a homogeneous linear system whose behavior at the origin should approximate the behavior the original

system near the critical point c.

Let’s now re-examine the preceding example.




=  (1− − )(3)




=  (075−  − 05)

We have

F ( ) =

∙
− 2 − 

075 − 2 − 05
¸

and so Ã
1


1


2


2


!
=

µ
1− 2−  −
−05 075− 2 − 05

¶

Let’s now see what’s happening near each critical point of (3).

• c = (0 0) ⎛⎝ 1


¯̄
c

1


¯̄̄
c

2


¯̄
c

2


¯̄̄
c

⎞⎠ =

µ
1 0

−0375 −075
¶

and so near x = (0 0) the system (3) behaves like

y0 =
µ
1 0

0 075

¶
y
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This is a decoupled homogenous solution whose general solution is

y () = 1


∙
1

0

¸
+ 2

075

∙
0

1

¸
Evidently, y = (0 0) is an unstable critical point (both exponential factors are positive so lim−→∞ ky ()− 0k −→
∞).

• c = (0 075) ⎛⎝ 1


¯̄
c

1


¯̄̄
c

2


¯̄
c

2


¯̄̄
c

⎞⎠ =

µ
025 0

−0375 −075
¶

The eigenvalues and eigenvectors of this matrix are

1 = 025  1 =

∙
8

−3
¸

2 = −075  2 =

∙
0

1

¸
and so the general solution of

y0 =
µ

025 0

−0375 −075
¶
y

will be

y () = 1
025

∙
8

−3
¸
+ 2

−075
∙
0

7

¸
y = 0 (hence, x = (0 0 75) for the original system) is evidently an unstable critical point, where

species 1 is growing exponentially and the species to heading for exponential extinction.

• c = (0 1). In this case we have⎛⎝ 1


¯̄
c

1


¯̄̄
c

2


¯̄
c

2


¯̄̄
c

⎞⎠ =

µ −1 −1
0 025

¶
the eigenvalues and eigenvectors of which are

1 = 025  1 =

∙
4

−5
¸

2 = −10  2 =

∙
1

0

¸
and so the general solution near the critical point will look like

y () = 1
025

∙
4

−5
¸
+ 2

−
∙
1

0

¸
Since the eigenvalues have opposite signs, this critical point will be unstable.

• c = (05 05). In this case, we have⎛⎝ 1


¯̄
c

1


¯̄̄
c

2


¯̄
c

2


¯̄̄
c

⎞⎠ =

µ −5 −5
−025 −05

¶
with

1 = −0146  1 =

∙ √
2

−1
¸

2 = −0854  2 =

∙ √
2

1

¸
and so the general solution near the critical point (05 0 5) will be

y () = 1
−0146

∙ √
2

−1
¸
+ 2

−0854
∙ √

2

1

¸
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In this case, both eigenvalues are negative and so

lim
−→∞

y () = 0

implying that for the original system c = (05 05) is an asymptotically stable critical point.

In fact, a more detailed examination of the direction field of (3) reveals that all trajectories

x () starting off with 1 (0)  0 and 2 (0)  0 eventually move towards this critical point.

2.3. Example 2: Let’s now consider another numerical example:




=  (1− − )(4)




=  (05− 025 − 075)

In this example, we again have four critical points

(0 0)  (1 0)  (0 2)  (05 05)

The critical points along the axes again correspond to situations where one or both of the species are not

present.

We’ll ignore the critical point at x = 0 and try to analyze the behavior of solutions about the other three

critical points:

At c = (1 0), we have

dF

dx
(c) :=

⎛⎝ 1


¯̄
c

1


¯̄̄
c

2


¯̄
c

2


¯̄̄
c

⎞⎠ =

µ
1− 2|(10) −|(10)
−075|(10) 05− 05 − 075|(10)

¶

=

µ −1 −1
0 −025

¶
The eigenvalus of this matrix are

1 = −1 and 2 = −025
Since both eigenvalues are negative, c = (1 0) will be a stable critical point.

At c = (0 2) we have

dF

dx
(c) :=

⎛⎝ 1


¯̄
c

1


¯̄̄
c

2


¯̄
c

2


¯̄̄
c

⎞⎠ =

µ
1− 2|(02) −|(02)
−075|(02) 05− 05 − 075|(02)

¶

=

µ −1 0

−15 −05
¶

The eigenvalues of this matrix are

1 = −1 and 2 = −05
Since these are both negatives c = (0 2) will be a stable critical point.

Let’s look at the nature of solutions near the critical point c = (05 05). We have

dF

dx
(c) :=

⎛⎝ 1


¯̄
c

1


¯̄̄
c

2


¯̄
c

2


¯̄̄
c

⎞⎠ =

µ
1− 2|(0505) −|(0505)
−075|(0505) 05− 05 − 075|(0505)

¶

=

µ −05 −05
−0375 −0125

¶
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The eigenvectors and eigenvalues of this matrix are

1 = 016  1 =

∙
1

−131
¸

2 = −078  2 =

∙
1

057

¸
Thus, this critical point is also unstable.

Below is a plot of the direction field for this system

Apparently, for this ecosystem, except for the (unstable) cases where x (0) = (05 05) or (0 0), one species

will die out while the other will evolve towards its steady state population.


