LECTURE 9

Interacting Species

Having spent several lectures on solving linear systems of ODEs; it’s about time we discussed a prototypical
situation in which they arise.

The situations we shall now try to model will involve multiple species - which will be either competing for
the same food supply or in a predator-prey relationship.

1. Single Species

Let’s begin by modeling a single species in isolation. We wish to obtain a function that describes the
population P of a species as a function of time. The simplest model would be to simply say that the
growth rate of a species should be proportional to the size of the populations. A little more explicitly, in
the situation where the birth and death rates of the species are constants (respectively, 7, and 74), then

1) «
This simple model obviously only allows for only exponential growth or extinction.

= (’I"b — Td) P = P= Poe(rbird)t

A slightly more realistic model would include a term that would slow the rate of growth until it reached a
certain size (perhaps corresponding to a saturation of the available food supply). So we might try adding
a term to the right hand side of (1) that is positive when P is small, decreasing as P grows, and eventually
negative when P gets too large. The simplest kind of term with these properties would be a term of the
form

(A—aP)P
with A and a positive. Thus, we are lead to an ODE of the form
dP
(2) Ez()\—aP)P Aa>0

The constant A can be thought of as accounting for intrinsic growth rate and the constant a as somehow
reflecting the effect of the population size has its the food supply.

In fact, notice that when
A—aP =0
the rate of population growth will be zero. Thus,
P=X\a
is a critical point for the ODE. In fact, it is a stable and asymptotical stable critcal point. To see this,

let’s examine the linearization of P (t) about \/a.

If we set

then
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Note that for small u,
du

dt
which implies u (¢) = 0 is a stable and asymptotically stable node, which implies P (t) = % is a stable and
asysympotically stable critical point. .

~ —A\u

corresponds to a steady state population. Let us denote this steady state population by P;. Then in terms
of the intrinsic growth rate A and the steady state population P
A P

P:— —n = —
" a “TN

dP A P
E_(/\_EP>P_/\<1_E)P

Let’s go ahead and solve and see if its solution matches our intuition. Equation (2) is separable, and so we
can determine its general solution as follows

dpP 1 dpP
—=\1-P/P)P = ———=
dt Al /P:) (1—-P/P,) P dt

1
—In(P,—P)+InP:=X+C

In(P/(Ps—P))=X(t+C)

P awto) _ oo
PP e =e e

P
1- (P/Ps)
: The constant A can be chosen so that when ¢t = 0 the population is FP.
A= AN — P(0) __ B

1-P(0)/P; 1—Py/Ps
Incorporating this initial condition we now have

P B Py v

= e

1-P/P; 1—Py/P;s

we have

A

el

_ Ae)\t

or
p_ A =P/P)
1-P,/P,
o P,/ P P,
Pl1 0 s At — 0 At

[+ 2 Rm) =
or

P (1 - Py/Ps + Py/Pse™) = Pye™
or

7 Poe)\t
11— f)()/]jS + Po/Pse/\t

P(t)
To make this result a bit more understandable, let

be the ratio of the population size at time ¢ to the steady state population, and let Sy := Py/Ps be the
initial ratio. We have
Boe

PO T T Ao
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Plotting [ () as a function of ¢ gives us a picture of the possible scenarios (by varying ).
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2. Competing Species

Let us now consider a situation where there are two species competing for the same food supply. Let x (¢)
and y (t) denote the populations of species 1 and 2 at time ¢. In the absence of competition, we would
expect these functions to be governed by differential equations of the form

dx
dt

dy (e )
_— = — O
dt Yy&2 2Y

=z (g1 — o12)

The competition between the specifies is to be reflected as a negative contribution to the growth rate of one
species that is proportional to to population of the other species. Thus, we consider systems of the form

d =z (g1 —o1x — 1Y)
i €1 —01 1Y
aws _ (e asT)
&2 ot —

dt yle2 2Y 2

To get some idea of what can happen let’s look at a particular example:

2.1. Example 1:
dx
dt

L —y G-y —/2)

=z(l-z-y)
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The critical points for this system occur when
O=z(l-z-—y)
0=y@B/4-y—1x/2)

or
zr=0,y=0
x=0,y=3/4
z=1,y=0

r=1/2, y=1/2

This seems easy enough to understand: there a basically four different possibilities for the evolution of these
species, depending on the initial state.

(i) If neither species is present at ¢ = 0, then they both stay dead (the solution x (t) = (0,0)).

(ii) If one species is not present at ¢ = 0 (that is, we start off on one of the coordinate axes), then the
other species grows (or shrinks) to its stable population (corresponding to the constant accompa-
nying the quadratic term x? in its differential equation).

(iii) If both species are present at t = 0, then the two populations will eventually evolve to the stable

critical point (0.5,0,5)

However, a closer analysis will reveal some troubles with this interpretation. For starts, consider the plot
of the direction field for this system
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Note that the critical points at (0,0), (1.0) and (0,3/4) do not look at all like nodes.
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2.2. Behavior near critical points. As plot above shows, a computer generated direction field plot
doesn’t necessarily make it clear whether a critical point is stable, asympotically stable or unstable. To get
a much clearer idea as to what is going on near a critical point, a good strategy is to “linearize” the system
near the critical point, and infer from the behavior of the resulting linear system the stability properties of
a critical point.

Here’s how this works. Suppose c is a critical point of an autonomous system
x' =F (x)

Taylor expanding the vector valued function F about the critical point we get

6F1 6F1 —
oy |, o | T1—C1
< — F (c) + e + higher order terms
OF, OF,
—ﬂazl . GEN . Ty — Cp

Now the leading term F (c) = 0 since c is a critical point. Changing variables that that x = ¢ corresponds
to the origin;

y=x-—c¢
we get
oF oF T
d d oz c Oxp c
/
i dt o op .
oz c Oy, c n n
OF; OF;
oz c Oxy c
OFy, OFy,
oz c oy, c

— a homogeneous linear system whose behavior at the origin should approximate the behavior the original
system near the critical point c.

Let’s now re-examine the preceding example.

Q L ri-ay)
dy
=Y (0.75 — y — 0.5x2)
We have ,
| x—x* -y
F(z,y) = [ 0.75y — 4 — 0.5y }
and so

% % _ 1-2z—y —x
9 oL —0.5y  0.75—2y — 0.5z

Let’s now see what’s happening near each critical point of (3).

e c=(0,0)
OF} OF}
Sl B\ 1 0
AR P ~\ -0.375 —0.75

oz lc ayc

and so near x = (0,0) the system (3) behaves like

, (1 0
Y=Vo o )Y



2. COMPETING SPECIES 6
This is a decoupled homogenous solution whose general solution is

y (t) = ciéf { (1) } + ¢ ™8 [ (1) }

Evidently, y = (0, 0) is an unstable critical point (both exponential factors are positive so lim; ., ||y (¢) — O|| —

00).

c = (0,0.75)
om| - om
oz lc oy c _ ( 0.25 0 )
OF, OF, —-0.375 —0.75

oz lc Jy c
The eigenvalues and eigenvectors of this matrix are

T = 0.25 5 51 =

1

8
-3
7“2:—0.75 ) 52:|:(1):|
and so the general solution of
;o 0.25 0
Y=\ -0315 —0.75 )Y

8 _ 0
y(t) 20160‘25t |: Oy ] + coe 0.75t |: 7 :|

y = 0 (hence, x = (0,0, 75) for the original system) is evidently an unstable critical point, where
species 1 is growing exponentially and the species to heading for exponential extinction.
c = (0,1). In this case we have

will be

ok (13N
oz lc oy c . -1 -1
OF, oF n 0 0.25

ox ’c Jy c

the eigenvalues and eigenvectors of which are

'1“1:0.25 s 51:|:45:|

ro =—1.0 52:[(1)]

and so the general solution near the critical point will look like

4 |1
y (t) = ¢1e%2% { 5 } +cpet [ 0 ]
Since the eigenvalues have opposite signs, this critical point will be unstable.
c = (0.5,0.5). In this case, we have

OF 9OF

ox ’c oy c . -5 -5
%’ OFy —\ —-0.25 —0.5
oz Ic oy c
with
r = —0.146 5 51 = |: \_/? :|
o = —0.854 5 52 = |: \{5 :|

and so the general solution near the critical point (0.5,0,5) will be

o[ V2] 2]

y (t) = cie 1
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In this case, both eigenvalues are negative and so
lim y(t)=0
t— o0

implying that for the original system ¢ = (0.5,0.5) is an asymptotically stable critical point.
In fact, a more detailed examination of the direction field of (3) reveals that all trajectories
x (t) starting off with 7 (0) > 0 and 2 (0) > 0 eventually move towards this critical point..

2.3. Example 2: Let’s now consider another numerical example:

(@ "
% =y (0.5 —0.25y — 0.75x)

In this example, we again have four critical points
(0,00 , (L,0) , (0,2) , (0.5,0.)

The critical points along the axes again correspond to situations where one or both of the species are not
present.

We'll ignore the critical point at x = 0 and try to analyze the behavior of solutions about the other three
critical points:

At ¢ = (1,0), we have

OF OF
LI Ble Bl ) _( 1-2la0 —la0)
dx : %L: 58_1;2 —0.75y|(1,0) 0.5 — 05y — 0751’|(1’O)

[

(-1 -
“L 0 —025

The eigenvalus of this matrix are
ry = —1 and ro = —0.25

Since both eigenvalues are negative, ¢ = (1,0) will be a stable critical point.

At ¢ = (0,2) we have

OF OF:
dF o) = Gile Bl | L[ 120y ~l(0,2)
ax T emy om —0.75y] 0z 0.5 — 0.5y — 0.752] o )

[

(-1 0
“\ -15 —05

The eigenvalues of this matrix are

rn=-—1 and 7r9=-0.5

Since these are both negatives ¢ = (0,2) will be a stable critical point.

Let’s look at the nature of solutions near the critical point ¢ = (0.5,0.5). We have

o o
dF (c) = RrY }c oy ) ( 1 — 27| g 5.0.5) —{(0.5,0.5) )
dx oF:|  Of —0.759] (95,05 0-5— 0.5y — 0.752] g 5 0 5)

[ —05 —05
~\ —0375 —0.125
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The eigenvectors and eigenvalues of this matrix are

1 =0.16 5 51 = [ 131 :|

1
7"2:—0.78 s §2=|:057:|

Thus, this critical point is also unstable.

Below is a plot of the direction field for this system
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Apparently, for this ecosystem, except for the (unstable) cases where x (0) = (0.5,0.5) or (0,0), one species
will die out while the other will evolve towards its steady state population.



