LECTURE 4

Series Solutions of the Heat Equation, Cont’d

1. Summary of Sturm-Liouville Theory

A Sturm-Liouville problem is a one parameter family of differential equations / boundary problems of the
form

(1) = (1) + @+ 2Dy = 0
(4.2) cry(a) + c2y/'(a)
(4.3) diy(b) + doy' (b) =

The relevant facts are

1. For all but a discrete set {A,, | n € N} of choices of A, there are no solutions to (4.1) - (4.3). The A,
are referred to as eigenvalues of the Sturm-Liouville problem, and corresponding solutions ¢, are
referred to as the eigenfunctions of the Sturm-Liouville problem.

2. If ¢y, (%) and ¢y, (%) are solutions to (4.1) - (refl04-0c) and A, # Ap,, then

b
/ ér, (@), (2)r(x)de =0
3. If the eigenvalues A, are nondegenerate, then the functions
o, (2
B (%) = ) - i ) 172
Ja (6x,.(2))" r(w)de

form a complete orthonormal basis for space of quasi-smooth functions on the interval [a, b]. If some
of the eigenvalues A, are degenerate, then the Gram-Schmid orthogonalization procedure can be
used to construct an orthonormal basis from the eigenfunctions ¢ .

4. Every quasi-smooth function f :[a,b] — R, can be expanded as

f@) =) anBa(t)
n=1
where the coefficients «,, are determined by

a, :/ F(2)Bn (2)r(x)dx

This series converges in the sense that

b N 2
i (f(l‘)—;anﬁn(x)) e = 0

a
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2. Series Solutions Satisfying Homogeneous Boundary Conditions

We shall now attempt to construct a solution of the equations

(4.4) g—f—cﬂ% = w(x,1)
(45) be.0) = f(2)
(4.6) #0,t) = 0
(4.7) o(L,t) = 0

in the region 0 < « < L, t > 0. Note that this differs from the example in Lecture 1 because now the PDE
is inhomogeneous (the example in Lecture 1 had w(z,t) = 0).

We shall begin by generalizing the ansatz we used in the separation of variables technique. Instead of
demanding

¢(w,t) = F(x)G(1)
we shall suppose
(4.8) 3, 1) = an(t)Balx)
neN

where {8,,n € N} is a complete basis for the set of twice differentiable functions on the interval [0, L].
This expansion is interpreted as follows: for any fixed time ¢, the solution ¢(x,t) can be regarded as a
function ¢ (z) of  alone. But “every” function of z on the interval can be represented as an infinite linear
combination of the basis functions 3, ; thus,

1/)t(l‘) = Z at,nﬁn(l‘)
neN

Setting o, (t) = ay ,, we arrive at the expansion (4.2).

Now although any complete set {3, } will do, substantial simplifications will occur if the basis {3, } is chosen
in a way that complements the original problem. More precisely, we shall choose the functions 8, (z) to be
the complete basis corresponding to the Sturm-Liouville problem

(4.9) B'+A3 = 0
(4.10) BO) = 0
(4.11) B(L) = 0

This particular choice will be justified by the relative ease by which we obtain a solution of (4.4) - (4.7).
At present we remark only that when one tries to solve the homogeneous equation corresponding to (4.4)
by separation of variables one is lead to the initial value problem

C
F"(x) — a—zF(x) =0
F(0) =
F(L) =
which is just the Sturm-Liouville problem (4.9) - (4.11).

As we discovered last time, the nontrivial solutions of (4.9) - (4.11) occur only when

n?r?

LZ

A=
and

Bn(z) = sin (nL—ﬂ-x)
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We thus set
(4.12) o(r,0) =3 an(t)sin (”L—”x)
n=1
Similarly, we set
= . /nm
(4.13) w(z,t) = HZ::l wy (1) sin (Tx)

Plugging (4.12) into the original differential equation (4.4) yields
2.2

S (-0 ) (722) - i un(tysin (")

n=1

mnex

If we multiply both sides of this equation by sin ( T ) and then integrate from 0 to L we obtain

[ 3 (o 5 s (i (= [ ity () i () s
n=t n=1

Using the identities

L nmw mnre L
/0 sin (Tx) sin ( 7 ) dx = 567””

we then obtain

o0 2.2 L o0 L
/t_ 2 T _6mn: nt_(smn
m(an() o) i = el
or
2.2.2
(4.14) o (t) — ”272”%(15) = wn(t)

Equation (4.14) is a first order linear differential equation with constant coefficients; its general solution is

n2ﬂ_2a2t t n2ﬂ_2a2
an(t) = e 12 [/ e 2 Twy(r)dr + cn]
0
Thus,

2.2

°© n27'r2a2 t 7L27'l' a

(4.15) (e, t) = Ze_ DR [/ e 2 Tw,(r)dr + cn] sin (nL—ﬂ-x)
n=1 0

Finally, to fix the constants ¢,, we impose the initial condition

¢(z,0) = f(z)
This leads to

ni::lcn sin (nL—ﬂ-x) = f(»)

which, by applying again the orthogonality properties of the 8, (z), leads to

(4.16) en = %/OL sin (nL—ﬂ-x) flz)dx

In summary, the solution to equations (4.4) - (4.7) is given by the following formula:

¢(l‘,t) - io: e——"2Ljr z—a% [/Ot 6_"21,-# z—a27wn(7-)d7' _|_ %/OL SiIl (TLL_ﬂ'x) f(l‘)dl‘] Sin (nL—Trl‘)

n=1
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Homework Problems:

1. Prove (directly) that if ¢, and ¢, are solutions of

= (o) + @+ w@ny = 0

on the interval (a, b), respectively for A = A1, and A = Ay, then

/ ()P, (2)r(x)de =0

if Ay # As.
2. Discuss the implications of the Sturm-Liouville Theorem for the following ODE/BVP
d2
——+Mf = 0
dz? A
flo)y =0
f2r) = 0

and their correspondence with the Fourier Theorem. (In other words, show that the Fourier theorem is a
special case of the Sturm-Liouville theorem.)

3. (Problem 1.6.2 in the text.)

(a) For 0 < # < L, solve the problem
¢t - a2¢xx == w(l‘, t)

#0,t) = 0
S(L,1) = 0
q[)(l‘,O) = f($)

by means of a series expansion involving the eigenfunctions of 3/ + A5 = 0, 8(0) = 0, #(L) = 0; where
w(z,t) and f(x) are prescribed functions.

(b) If the end conditions are altered to read
#(0,t) = 0
d(L,t)+chdp(L,t) = 0
where ¢ > 0 is a constant, find an appropriate set of eigenfunctions and obtain a series solution to the
problem.



